RD-11.15-16.2022-Serra

Conference Video|Duration: 25:01
November 16, 2022
Please login to view this video.
  • Video details
    Nanosatellites and CubeSats have drastically reduced the cost to access space and allowed several actors to launch entire fleets of satellites in a short span of time. Communications remain a challenge in terms of miniaturization and throughput, but also for regulatory and spectrum assignment reasons. Optical communication is a rapidly growing and maturing field that can deliver orders of magnitudes better data rate and Size, Weight, and Power (SWaP). For those reasons, optical communications are now the backbone of all major new constellation projects, both from private and government organizations. On top of raw numbers advantages, laser communication can greatly enhance RF-based navigation or time transfer methods, with position accuracy in the millimeter range.

    The MIT Space Telecommunications, Astronomy and Radiation Laboratory (STAR Lab) has developed, in collaboration with the University of Florida (UF), and the NASA Ames Research Center, a series of lasercom payloads, as part of the CubeSat Laser Infrared CrosslinK (CLICK) mission. The CLICK payloads employ technologies such as Micro-Electro-Mechanical System (MEMS) Fast Steering Mirror (FSM) and Chip-Scale Atomic Clocks (CSAC) to demonstrate robust optical communication in a less than 10 x 10 x 15 cm volume. The first satellite, CLICK-A, has been launched and is undergoing commissioning. CLICK-A can downlink data at 50 Mbps to a small portable ground station. The second flight, CLICK-BC, will demonstrate a crosslink between two cubesats, and feature enhanced navigation and ranging capabilities. CLICK-BC is expected to launch in Fall 2023. I will discuss the CLICK mission and laser communication, as well as future space optical navigation systems. 

Locked Interactive transcript
Please login to view this video.
  • Video details
    Nanosatellites and CubeSats have drastically reduced the cost to access space and allowed several actors to launch entire fleets of satellites in a short span of time. Communications remain a challenge in terms of miniaturization and throughput, but also for regulatory and spectrum assignment reasons. Optical communication is a rapidly growing and maturing field that can deliver orders of magnitudes better data rate and Size, Weight, and Power (SWaP). For those reasons, optical communications are now the backbone of all major new constellation projects, both from private and government organizations. On top of raw numbers advantages, laser communication can greatly enhance RF-based navigation or time transfer methods, with position accuracy in the millimeter range.

    The MIT Space Telecommunications, Astronomy and Radiation Laboratory (STAR Lab) has developed, in collaboration with the University of Florida (UF), and the NASA Ames Research Center, a series of lasercom payloads, as part of the CubeSat Laser Infrared CrosslinK (CLICK) mission. The CLICK payloads employ technologies such as Micro-Electro-Mechanical System (MEMS) Fast Steering Mirror (FSM) and Chip-Scale Atomic Clocks (CSAC) to demonstrate robust optical communication in a less than 10 x 10 x 15 cm volume. The first satellite, CLICK-A, has been launched and is undergoing commissioning. CLICK-A can downlink data at 50 Mbps to a small portable ground station. The second flight, CLICK-BC, will demonstrate a crosslink between two cubesats, and feature enhanced navigation and ranging capabilities. CLICK-BC is expected to launch in Fall 2023. I will discuss the CLICK mission and laser communication, as well as future space optical navigation systems. 

Locked Interactive transcript