RD-11.15-16.2022-Minchew

Conference Video|Duration: 39:48
November 16, 2022
Please login to view this video.
  • Video details
    Large uncertainties in climate forecasts create massive challenges to mitigation and adaptation efforts needed to allow society to prepare for and adjust to changes in the climate system, such as increased storm severity and frequency, more severe droughts, sea-level rise, and ozone depletion. There is a critical need for high spatial and temporal resolution observations to enable planners, policy makers, and the rest of society to prepare for the changes to come. MIT researchers propose a Stratospheric Airborne Climate Observatory System (SACOS), an ensemble of unmanned solar powered aircraft capable of operating for weeks or months in the stratosphere, each integrally designed with instrument systems focused on a suite of climate-observing missions. Together, these enable a combination of long duration solar powered observing systems, each targeted at the highest priority risk factors that threaten global societal stability. Professor Minchew leads one of a series of Critical Observing Missions that is related to high latitude ice observations, focused on Antarctic Ice Shelf Collapse Forecasting and Greenland Glacier Flow Prediction.
Locked Interactive transcript
Please login to view this video.
  • Video details
    Large uncertainties in climate forecasts create massive challenges to mitigation and adaptation efforts needed to allow society to prepare for and adjust to changes in the climate system, such as increased storm severity and frequency, more severe droughts, sea-level rise, and ozone depletion. There is a critical need for high spatial and temporal resolution observations to enable planners, policy makers, and the rest of society to prepare for the changes to come. MIT researchers propose a Stratospheric Airborne Climate Observatory System (SACOS), an ensemble of unmanned solar powered aircraft capable of operating for weeks or months in the stratosphere, each integrally designed with instrument systems focused on a suite of climate-observing missions. Together, these enable a combination of long duration solar powered observing systems, each targeted at the highest priority risk factors that threaten global societal stability. Professor Minchew leads one of a series of Critical Observing Missions that is related to high latitude ice observations, focused on Antarctic Ice Shelf Collapse Forecasting and Greenland Glacier Flow Prediction.
Locked Interactive transcript