RD-11.15-16.2022-Godart

Conference Video|Duration: 24:40
November 16, 2022
Please login to view this video.
  • Video details
    As renewable energy becomes increasingly more affordable and integrated into electrical grids across the globe, one problem persists in our transition away from fossil fuels - the transportation and long-term storage of renewable energy. In the United States alone, over 13,000 TWh is transported each year as fossil-based energy carriers including petroleum and methane, and as we move away from these fuels, new technologies will need to be deployed to meet the increased demand for renewables far from their point of generation. Existing energy storage technologies like electrochemical and thermal batteries are critical for this transition, but due to their relatively low energy density, their use is limited to short-distance transportation and stationary applications (e.g. home and grid storage). Consequently, many potential energy markets (e.g. maritime shipping, industrial hydrogen, process heating, remote power generation) are left out of the renewable energy transition due to this technology gap in energy transportation - today’s primary storage and transmission solutions fail to compete with fossil fuels on energy density, cost, and safety. One approach to solving this challenge is to recognize that we are already transporting a substantial amount of energy around the world as the embodied energy of different materials - metals, organic materials, and plastics. Aluminum, for example, is the third most abundant element on Earth, has double the energy density of gasoline, and is easy and cheap to produce and ship. With the addition of a few key energy extraction technologies, we can turn the aluminum supply chain and others into vast energy transportation networks that can actually address the gaps that fossil fuels will leave behind.
Locked Interactive transcript
Please login to view this video.
  • Video details
    As renewable energy becomes increasingly more affordable and integrated into electrical grids across the globe, one problem persists in our transition away from fossil fuels - the transportation and long-term storage of renewable energy. In the United States alone, over 13,000 TWh is transported each year as fossil-based energy carriers including petroleum and methane, and as we move away from these fuels, new technologies will need to be deployed to meet the increased demand for renewables far from their point of generation. Existing energy storage technologies like electrochemical and thermal batteries are critical for this transition, but due to their relatively low energy density, their use is limited to short-distance transportation and stationary applications (e.g. home and grid storage). Consequently, many potential energy markets (e.g. maritime shipping, industrial hydrogen, process heating, remote power generation) are left out of the renewable energy transition due to this technology gap in energy transportation - today’s primary storage and transmission solutions fail to compete with fossil fuels on energy density, cost, and safety. One approach to solving this challenge is to recognize that we are already transporting a substantial amount of energy around the world as the embodied energy of different materials - metals, organic materials, and plastics. Aluminum, for example, is the third most abundant element on Earth, has double the energy density of gasoline, and is easy and cheap to produce and ship. With the addition of a few key energy extraction technologies, we can turn the aluminum supply chain and others into vast energy transportation networks that can actually address the gaps that fossil fuels will leave behind.
Locked Interactive transcript