Skip to main content
MIT Corporate Relations
MIT Corporate Relations
Search
×
Read
Watch
Attend
About
Connect
MIT Startup Exchange
Search
Sign-In
Register
Search
×
MIT ILP Home
Read
Faculty Features
Research
News
Watch
Attend
Conferences
Webinars
Learning Opportunities
About
Membership
Staff
For Faculty
Connect
Faculty/Researchers
Program Directors
MIT Startup Exchange
User Menu and Search
Search
Sign-In
Register
MIT ILP Home
Toggle menu
Search
Sign-in
Register
Read
Faculty Features
Research
News
Watch
Attend
Conferences
Webinars
Learning Opportunities
About
Membership
Staff
For Faculty
Connect
Faculty/Researchers
Program Directors
MIT Startup Exchange
Back to Faculty/Researchers
Prof. Michael S Strano
Carbon P Dubbs Professor in Chemical Engineering
Director, Center for Enhanced Nanofluidic Transport (CENT)
Primary DLC
Department of Chemical Engineering
MIT Room:
66-570
(617) 324-4323
strano@mit.edu
https://cheme.mit.edu/profile/michael-s-strano/
Assistant
Munire Temeloglu
(617) 324-7569
munire@mit.edu
Areas of Interest and Expertise
Transport in Nanopores
Thermopower Waves for Energy Generation
Exciton Engineering for Solar Energy
Nanosensors for Reaction Network Analysis
Near-Infrared (NIR)-Fluorescence
Raman-Scattering and Fluorescence Quenching
Carbon Nanotubes
Graphene
Optical Biomedical Sensors
Plant Nanobionics
Active Packaging; Moisture/Oxygen
Food, Safety
Research Summary
The Strano laboratory has been interested in how 1D electronic materials such as carbon nanotubes can be utilized to illustrate new concepts in molecular transport and energy transfer. In the first example, we predict and demonstrate the concept of thermopower waves for energy generation. Coupling an exothermic chemical reaction with a thermally conductive CNT creates a self-propagating reactive wave driven along its length. We realize such waves in MWNT and show that they produce concomitant electrical pulses of high specific power >7 kW/kg. Such waves of high power density may find uses as unique energy sources.
In the second system, the lab fabricated and studied SWNT ion channels for the first time and show that the longest, highest aspect ratio, and smallest diameter synthetic nanopore examined to date, a 500 μm SWNT, demonstrates oscillations in electro-osmotic current at specific ranges of electric field, that are the signatures of coherence resonance, yielding self-generated rhythmic and frequency locked transport. The observed oscillations in the current occur due to a coupling between stochastic pore blocking and a diffusion limitation that develops at the pore mouth during proton transport.
Lastly, the laboratory has been interested in how semiconducting single walled carbon nanotubes (SWNT) can be modified such that their fluorescent emission is modulated in response to specific molecules, hence creating a new class of sensor. Such sensors have important advantages, including enhanced optical penetration of tissues in the near infrared, reduced auto-fluorescence, infinite resistance to photobleaching and most recently, single molecule analyte sensitivity. This presentation will review our recent efforts in this space including new platforms for label free protein detection, nitric oxide, H2O2 and the interfacing of sensor arrays to living cells.
Recent Work
Projects
July 8, 2019
Department of Chemical Engineering
Asymmetric Chemical Doping for Photocatalytic CO2 Reduction
Principal Investigator
Michael Strano
April 18, 2019
Department of Chemical Engineering
Center for Enhanced Nanofluidic Transport (CENT): Thrust 1
Principal Investigator
Michael Strano
April 18, 2019
Department of Chemical Engineering
Center for Enhanced Nanofluidic Transport (CENT)
Principal Investigator
Michael Strano
April 18, 2019
Department of Chemical Engineering
Center for Enhanced Nanofluidic Transport (CENT): Engineering Ionic and Molecular Selectivity in Chemical Separations
Principal Investigator
Michael Strano
April 18, 2019
Department of Chemical Engineering
Center for Enhanced Nanofluidic Transport (CENT): Understanding Ion Correlation, Dissipation and Solvation Phenomena Under Extreme Confinement
Principal Investigator
Michael Strano
July 30, 2015
Department of Chemical Engineering
Carbon Nanotube Photovoltaics
Principal Investigator
Michael Strano
July 30, 2015
Department of Chemical Engineering
Dimensional Materials
Principal Investigator
Michael Strano
July 30, 2015
Department of Chemical Engineering
Plant Nanobionics
Principal Investigator
Michael Strano
July 30, 2015
Department of Chemical Engineering
Nanosensor Platforms for the Study of Cellular Signalling
Principal Investigator
Michael Strano
April 28, 2014
Department of Chemical Engineering
Selective Transport Membrane Electrodes Based on 2D Electronic Materials: New Concepts for Integrated Renewable Energy Generation
Principal Investigator
Michael Strano
April 18, 2014
Department of Chemical Engineering
Molecular Recognition Using Carbon Nanotube Adsorbed Polymer and Bio-Polymer Phases: Synthetic Nanotube Templated Antibodies
Principal Investigator
Michael Strano
August 5, 2011
Department of Chemical Engineering
Graphene Approaches to Terahertz Electronics (GATE) MURI
Principal Investigator
Michael Strano
May 4, 2011
Department of Chemical Engineering
Energy Generation Via Thermopower Waves
Principal Investigator
Michael Strano
Video
4.13.22-Build.nano-Michael-Strano
April 13, 2022
Conference Video
Duration: 16:6
Show more
Michael Strano
Professor of Chemical Engineering
MIT Department of Chemical Engineering
Related Faculty
Andrea Kay Goertzen
Graduate Student
Prof. J Christopher Love
Raymond A (1921) and Helen E St. Laurent Professor of Chemical Engineering
Prof. Brandon J DeKosky
Ragon Institute-MIT Career Development Associate Professor of Chemical Engineering