Skip to main content

MIT Corporate Relations

MIT Corporate Relations
MIT Logo
  • Read
  • Watch
  • Attend
  • About
  • Connect
  • MIT Startup Exchange
Search
  • Sign-In
  • Register
MIT ILP Home
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
User Menu and Search
  • Sign-In
  • Register
MIT ILP Home
Toggle menu
  • Sign-in
  • Register
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange

Search Results


Filter Results
  • Show:
  • 10
  • 50
  • 100

Filter Results

Narrow your results
  • News (275)
  • Videos (412)
  • Events (131)
  • Research (1058)
  • Faculty (311)
  • Members (1)
2205 search results found
  • 2020 Innovations in Management - Michael Cusumano

    May 22, 2020Conference Video Duration: 59:34

    The Business of Platforms: Strategy in the Age of Digital Competition, Innovation, and Power

    This talk will summarize some key findings from a new book by Michael A. Cusumano, Annabelle Gawer, and David B. Yoffie. We will focus on the key features associated with digital platforms – businesses that connect two or more market sides, with supply or demand driven at least in part by network effects. Platform companies are now the most valuable companies in the world and the first trillion-dollar businesses. The talk will explain how digital platforms differ from conventional product or service businesses, and why some markets produce spectacular winner-take-all-or-most outcomes while others result in spectacular financial losses.

  • 11.19.20 Customer Experience Digital startups

    November 19, 2020Conference Video Duration: 71:27

    Customer Analytics

    Endor: Predictive analytics on customer data without data scientists
    FindOurView: Customer insights with language understanding
    Paradigm Sift: Applying cultural context to understand customers at scale
    Cerebri.ai: AI-based next actions to drive customer engagement
    Assetario:  Personalizes the in-app purchase to drive user happiness and revenue

    Customer Engagement & Technology

    GoWith: Enhancing the airport passengers' experience every step of the way.
    Voomer: AI to empower people for video communication
    ServiceMob: Making customer service access simple with AI
    Posh: Conversational AI for customer service & helpdesk
    Silverthread: Improving software health and economics at scale

  • Conference-ICT-2018

    Edward Damiano - 2016-Digital-Health_Conf-videos

    September 14, 2016Conference Video Duration: 37:33

    The Long and Winding Road to the Bionic Pancreas

    For a little over a dozen years, our group has been developing, integrating, and testing various bihormonal (insulin and glucagon) bionic pancreas technologies for autonomous regulation of glycemia in people with type 1 diabetes (T1D). The technology has evolved over the years from a crude and clumsy system of interconnected pumps and sensors cobbled together around a laptop computer, to a system that runs on an iPhone, which wireless communicates with two infusion pumps and a sensor, and, finally, to its ultimate embodiment as a dual-chamber infusion pump, a sensor, and mathematical algorithms all housed within a single compact integrated device, which we call the iLet (in homage to the pancreatic islets of Langerhans which contain the alpha and beta cells that secrete glucagon and insulin).

    The laptop version of our bionic pancreas was tested first in a diabetic swine model of T1D at Boston University (BU) between 2005 and 2009 and then in inpatient clinical trials with our collaborators at the Massachusetts General Hospital (MGH) between 2008 and 2012 in adults and adolescents with T1D. Between 2013 and 2016 we conducted outpatient clinical trials of the iPhone version of our bionic pancreas together with our clinical collaborators at MGH, Stanford, the University of North Carolina, and the University of Massachusetts. Results of these studies will be presented along with our plans for the final pivotal trials of the iLet and the pathway ahead for regulatory approval.

    2016 MIT Digital Health Conference

  • February 6, 2012
    Department of Political Science

    The National Military Command Structure and U.S. Grand Strategy

    Principal Investigator Harvey Sapolsky

  • December 16, 2015
    MIT Media Lab

    Media Lab Digital Certificates Project

    Principal Investigator Mitchel Resnick

  • Conference-ICT-2018

    Kalyan Veeramachaneni - 2016-Digital-Health_Conf-videos

    September 14, 2016Conference Video Duration: 36:36

    Rapid Discovery of Predictive Models from Large Repositories of Signals Data

    This talk is focused on the methods and technologies to answer the question ‘Why does it take a long time to process, analyze and derive insights from the data?’ Dr. Veeramachaneni is leading the ‘Human Data Interaction’ Project to develop methods that are at the intersection of data science, machine learning, and large scale interactive systems. With significant achievements in storage , processing, retrieval, and analytics, the answer to this question now lies in developing technologies that are based on intricately understanding the complexities in how scientists, researchers, analysts interact with data to analyze, interpret, and derive models from it. In this talk, Dr. Veeramachaneni will present how his team is building systems to transform this interaction for the signals domain using an example of physiological signals. Prediction studies on physiological signals are time-consuming: a typical study, even with a modest number of patients, usually takes from 6 to 12 months.

    In this talk, he will describe a large-scale machine learning and analytics framework, BeatDB, to scale and speed up mining predictive models from these waveforms. BeatDB radically shrinks the time an investigation takes by: (a) supporting fast, flexible investigations by offering a multi-level parameterization, (b) allowing the user to define the condition to predict, the features, and many other investigation parameters (c) pre-computing beat-level features that are likely to be frequently used while computing on-the-fly less used features and statistical aggregates.

    2016 MIT Digital Health Conference

  • July 28, 2011
    MIT Media Lab

    IDA: Inexpensive Networked Digital Stethoscope

    Principal Investigator Rosalind Picard

  • November 1, 1997
    MIT Sloan School of Management

    Strategies for Sustained Success in New Product Development

    Principal Investigator James Utterback

  • October 2, 2000
    Department of Brain and Cognitive Sciences

    Neural Basis of Implicit Learning and Action Strategies

    Principal Investigator Ann Graybiel

  • January 20, 2017
    Computer Science and Artificial Intelligence Laboratory

    Location-Independent Networks: Evaluation Strategies and Studies

    Principal Investigator Karen Sollins

Pagination

  • of 221
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • Next page

Sign up to receive news and updates from MIT Industrial Liaison Program Sign up

  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
  • LinkedIn
  • YouTube
  • Twitter
Home

1 Main Street
12th Floor, E90-1201

Cambridge, MA 02142

Privacy Policy

Accessibility

617-253-2691
ask-ilp@mit.edu

MIT OCR Logo