Skip to main content

MIT Corporate Relations

MIT Corporate Relations
MIT Logo
  • Read
  • Watch
  • Attend
  • About
  • Connect
  • MIT Startup Exchange
Search
  • Sign-In
  • Register
MIT ILP Home
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
User Menu and Search
  • Sign-In
  • Register
MIT ILP Home
Toggle menu
  • Sign-in
  • Register
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange

Search Results


Filter Results
  • Show:
  • 10
  • 50
  • 100

Filter Results

Narrow your results
  • News (279)
  • Videos (454)
  • Events (144)
  • Research (1044)
  • Faculty (324)
  • Members (1)
2263 search results found
  • October 7, 2008
    Department of Electrical Engineering and Computer Science

    Digital Photography and Image-Based Editing (Computational Photography and Video)

    Principal Investigator Fredo Durand

  • Conference-ICT-2018

    Polina Golland - 2016-Digital-Health_Conf-videos

    September 14, 2016Conference Video Duration: 30:55

    Medical Image Analysis

    I will review our work in extracting clinically relevant characterizations of anatomy and pathology from medical images in two domains. First, joint modeling of image, genetic and clinical data is used to gain insight into the patterns of disease in large heterogeneous clinical populations. Examples include studies of white matter disease in stroke patients from brain MRI, of genetically defined patterns of emphysema in COPD patients as observed in chest CT, and others. The second family of applications aims to provide accurate delineations of pathology and make predictions in medical scans of individual patients. Examples include functional imaging of the placenta and cardiac image analysis for surgical planning.

    2016 MIT Digital Health Conference

  • March 13, 2017
    Department of Civil and Environmental Engineering

    Redesigning Conservation Strategies of the Dead Sea Scrolls

    Principal Investigator Admir Masic

  • April 15, 2015
    MIT Media Lab

    Digital Currency Initiative (DCI)

    Principal Investigator Neha Narula

  • February 8, 2012
    Department of Chemistry

    New Cycloaddition and Annulation Strategies for Organic Synthesis

    Principal Investigator Rick Danheiser

  • 2024 MIT R&D Conference: Track 3 - Innovations - Enabling Innovation In Industry and Academia Through Digital Transformation

    November 19, 2024Conference Video Duration: 43:49
    Enabling Innovation In Industry and Academia Through Digital Transformation
    Renaud Fournier
    Chief Officer for Business and Digital Transformation, MIT Office of the Executive Vice President and Treasurer (EVPT)
    The primary goal of the MIT Business and Digital Transformation office is to reduce the administrative burden and thereby free up our community’s time so that they can achieve their greatest impact. Innovation is the process of bringing about new ideas, methods, products, services, or solutions that have a significant positive impact and value. Our office, which launched in 2023, supports innovation at all levels at MIT - both in and outside of the research laboratory - and aims to modernize an organically developed 20 to 30-year-old set of enterprise systems, processes, and data.

    The MIT community relies on our enterprise systems for a range of activities — everything from hiring and evaluating employees to managing research grants and facilities projects to maintaining student information. Our vision in updating our systems is 1) to create easy-to-use and well-integrated systems, streamlined processes, and comprehensible and accessible data for reporting and analysis; 2) to simplify our business processes to improve efficiency and effectiveness; 3) to modernize our enterprise systems and data architecture to take advantage of more innovative technology and functionality; and 4) to make our data accessible and actionable by implementing more robust data governance through clear ownership and accountability.

    This talk shares both our plan and some best practices from recent efforts at transforming a complex collection of digital and non-digital assets into a more cohesive landscape, including a) addressing systems, processes, and data wholistically; b) developing a thoughtful and actionable multi-year roadmap of digital transformation projects; and c) engaging and assisting our entire community every step of the way.

  • Conference-ICT-2018

    Forest White - 2016-Digital-Health_Conf-videos

    September 14, 2016Conference Video Duration: 30:23

    High Resolution Analysis of Kinase Signaling Networks

    Receptor Tyrosine Kinases (RTKs) are critical for normal human physiology, but can be oncogenic when highly expressed or mutated in a wide array of human cancers. To define the critical components in these networks, we have developed mass spectrometry based methods enabling the absolute quantification of tyrosine phosphorylation sites in RTK signaling networks at high temporal resolution following stimulation with different ligands or inhibitors, in vitro and in vivo. Quantitative phosphorylation data generated in this analysis provides insight into the occupancy of multiple tyrosine phosphorylation sites on the receptor, highlights mechanisms of differential regulation in response to different ligands, and highlights resistance mechanisms to selected inhibitors.

    2016 MIT Digital Health Conference

  • Conference-ICT-2018

    Collin Stultz - 2016-Digital-Health_Conf-videos

    September 14, 2016Conference Video Duration: 37:55

    Computational Biomarkers for Assessing the Risk of Death after a Heart Attack

    Cardiovascular disease remains the leading cause of death in the industrialized world. Although research into the etiology and treatment of cardiac disease remains a focus of numerous research groups, the accurate identification of patients who are at risk of adverse events following a heart attack remains a major challenge in clinical cardiology. In this talk I will describe how sophisticated computational biomarkers, which integrate a diverse array of clinical information, can be used to identify patients who are at elevated risk of death after a cardiac event. This work demonstrates that computational biomarkers can provide useful and powerful insights that can help guide clinical decision making.

    2016 MIT Digital Health Conference

  • July 28, 2011

    Digitally Reconfigurable Forming Surface

  • August 27, 2015
    Anthropology Program

    Anti-Trafficking and Digital Technologies

    Principal Investigator Stefan Helmreich

Pagination

  • of 227
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • Next page

Sign up to receive news and updates from MIT Industrial Liaison Program Sign up

  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
  • LinkedIn
  • YouTube
  • Twitter
Home

1 Main Street
12th Floor, E90-1201

Cambridge, MA 02142

Privacy Policy

Accessibility

ask-ilp@mit.edu

MIT OCR Logo