There is great interest in “digital twins” to improve many aspects of semiconductor manufacturing, from increased device yield and performance, reduced consumption of energy and materials, increased flexibility, and to enable rapid uptake and scaling of new material, equipment, and process innovations. The digital twin has both physical and virtual components, with bilateral communication and control; the hope is to enable a wide range of models (of equipment, processes, wafers) at different fidelities (physical to simplified empirical, and machine-learning enabled), to support a wide range of “smart” functionalities. The road to digital twins goes through and builds upon many well-trodden paths. Here, several lines of research at MTL since the late 1980’s are highlighted, beginning with elements of the MIT Computer Aided Fabrication Environment including process flow languages, to DOE/Opt methods for automated surrogate model construction, and run by run control to track and compensate for equipment state and wear in CMP and other unit processes. The development of “statistical metrology” methods encompassed characterization and modeling of semiconductor variation, with layout pattern dependent models to identify “hot spots” in planarization, dishing, and erosion for a given design, as well as to guide dummy fill generation. An evolution from statistical to ML/AI approaches, particularly Bayesian methods, enabled design for manufacturability (DFM) for rapid MOSFET characterization, and then rapid fabrication process tuning, as well as AI-enabled anomaly detection. These and other paths bring us to an exciting next stage of the journey: by harnessing advances in sensing and data collection, AI methods, and computational power not possible at the beginning, the community is poised to create and deploy digital twins for semiconductor manufacturing.
Principal Investigator Sherry Turkle
Can data series from a broad patient population be relevant and reliable tools in predicting individual outcomes when compared to personal wellness sensor data? Or, simply put from a patient perspective, “Can what happen to them, happen to me?” Retrieving and making use of “like-me” signal data based on similarity presents challenges far beyond digital marketing’s effectiveness in making targeted book and movie recommendations. By investigating and understanding those unique challenges, our research group has developed an approach based upon locality sensitive hashing (LSH). We will provide an update on our progress towards adapting LSH for fast and accurate Signal Like-Me capability.
2016 MIT Digital Health Conference
AI is transforming many industries. But addressing the full cycle, from development through deployment, requires key system engineering building blocks. Without these frameworks, efforts can be costly and unsuccessful. Learn how an AI systems engineering approach can avoid implementation pitfalls in this live webinar—a preview of the upcoming live virtual course AI Strategies and Roadmap: Systems Engineering Approach to AI Development and Deployment.