Prof. Linda G Griffith

School of Engineering Professor of Teaching Innovation
Professor of Biological and Mechanical Engineering
Director, Center for Gynepathology Research (CGR)

Primary DLC

Department of Biological Engineering

MIT Room: 16-429

Areas of Interest and Expertise

Tissue Engineering and Cell-Based Therapeutics
Molecular Design of Biomaterials
Drug Development
Microreactors
Women's Health
Therapeutic Gene Biotechnology
Bioinformatics and MicroArrays
Toxicogenomics Research Consortium

Research Summary

Professor Griffith's research is in the field of tissue engineering. Broadly defined, tissue engineering is the process of creating living, physiological, 3D tissues and organs. The process starts with a source of cells derived from a patient or from a donor. The cells may be immature cells, in the stem cell stage, or cells that are already capable of carrying out tissue functions; often, a mixture of cell types (e.g., liver cells and blood vessel cells) and cell maturity levels are needed. Coaxing cells to form tissue is inherently an engineering process, as they need physical support (typically in the form of some sort of 3D scaffold) as well as chemical and mechanical signals provided at appropriate times and places to form the intricate hierarchical structures that characterize native tissue.

The process of forming tissues from cells is a highly orchestrated set of events that occur over time scales ranging from seconds to weeks and dimensions ranging from 0.0001 cm ? 10 cm. Research projects in the lab address problems across this spectrum. At one end, we study basic biological and biophysical processes at the molecular and cellular level. This helps us understand what processes the cells need help with, and what events they can accomplish themselves. Our work at this end of the spectrum has led to the development of new tools for biologists to use in fundamental studies of cell behavior. At the other end of the spectrum, we develop new materials and devices that are needed to direct the process of tissue formation, under the classical engineering constraints of cost, reliability, government regulation, and societal acceptance. We are also developing new integrated micro-bioreactor systems to grow 3D tissues for use in drug discovery and development, and as physiological models of human diseases such as hepatitis. Research and development in this area includes integration of materials and scaffold engineering with computation models of fluid flow and nutrient metabolism. For a more detailed perspective, see 67. Griffith, L.G. and Naughton, G., "Tissue Engineering: Current Challenges and Expanding Opportunities" Science, 295, 1009-1014 (2002).

Recent Work

  • Video

    Linda Griffith - 2019 Life Science Conference

    December 10, 2019Conference Video Duration: 28:24

    PhysioMimetics: From Organoids to Organs - on - Chips, through Systems Biology

    “Mice are not little people” – a refrain becoming louder as the strengths and weaknesses of animal models of human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. This talk will highlight the integration of these rapidly moving fields to understand difficult clinical problems, with an emphasis on translating academic discoveries into practical use. Technical challenges in modeling complex diseases with “organs on chips” approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, as well as new ways of thinking about scaling to capture multiple different functionalities from drug clearance to cytokine signaling crosstalk. Examples in gynecology, metabolic diseases and other chronic inflammatory conditions will be highlighted.
     
    2019 MIT Increased Productivity in the Biopharmaceutical Industry Conference