Principal Investigator Ju Li
Formate Economy and AI-Assisted Catalyst Search Ju Li Battelle Energy Alliance Professor, MIT Department of Nuclear Science & Engineering Professor, MIT Department of Materials Science and Engineering
Carbon efficiency is one of the most pressing problems of carbon dioxide electroreduction today. While there have been studies on anion exchange membrane electrolyzers with carbon dioxide (gas) and bipolar membrane electrolyzers with bicarbonate (aqueous) feedstocks, both suffer from low carbon efficiency. In anion exchange membrane electrolyzers, this is due to carbonate anion crossover, whereas in bipolar membrane electrolyzers, the exsolution of carbon dioxide (gas) from the bicarbonate solution is the culprit. Here, we first elucidate the root cause of the low carbon efficiency of liquid bicarbonate electrolyzers with thermodynamic calculations and then achieve carbon-efficient carbon dioxide electro- reduction by adopting a near-neutral-pH cation exchange membrane, a glass fiber intermediate layer, and carbon dioxide (gas) partial pressure management. We convert highly concentrated bicarbonate solution to solid formate fuel with a yield (carbon efficiency) of greater than 96%. A device test is demonstrated at 100 mA cmÀ2 with a full-cell voltage of 3.1 V for over 200 h. ["A carbon-efficient bicarbonate electrolyzer," Cell Reports Physical Science 4 (2023) 101662]
Ju Li
Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering, MIT
Ju Li Professor of Nuclear Science and Engineering and Materials Science and Engineering
In this talk I will focus on applying in situ transmission electron microscopy (TEM) and lab-on-a-chip to mechanistic investigations of energy materials. Recent advances in nano-manipulation, environmental TEM and MEMS have allowed us to investigate coupled mechanical and electrochemical phenomena with unprecedented spatial and temporal resolutions. For example, we can now quantitatively characterize liquid-solid and gas-solid interfaces at nanometer resolution for in situ corrosion, fatigue and hydrogen embrittlement processes. These experiments greatly complement our modeling efforts, and together they help provide insights into how materials degrade in service due to combined electrochemical-mechanical forces.