Skip to main content

MIT Corporate Relations

MIT Corporate Relations
MIT Logo
  • Read
  • Watch
  • Attend
  • About
  • Connect
  • MIT Startup Exchange
Search
  • Sign-In
  • Register
MIT ILP Home
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
User Menu and Search
  • Sign-In
  • Register
MIT ILP Home
Toggle menu
  • Sign-in
  • Register
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange

Search Results


Filter Results
  • Show:
  • 10
  • 50
  • 100

Filter Results

Narrow your results
  • News (275)
  • Videos (412)
  • Events (131)
  • Research (1058)
  • Faculty (311)
  • Members (1)
2205 search results found
  • Nick
    Montfort

    Professor of Digital Media
    Primary DLC
    Comparative Media Studies/Writing

    Contact

    MIT Room
    14E-316
    Phone
    (617) 324-1429
    nickm@nickm.com
  • 2021-Management-Eva-Ponce

    September 23, 2021Conference Video Duration: 48:33

    Eva Ponce
    Executive Director, MITx MicroMasters in Supply Chain Management
    Director, Omnichannel Distribution Strategies

  • 11.15-16.23-RD-Braatz

    November 16, 2023Conference Video Duration: 36:48
    Recent Advances in the Manufacturing of mRNA Biotherapeutics 
  • Christopher
    Calabia

    Head of Programs, Central Bank Digital Currency
    Primary DLC
    MIT Media Lab

    Contact

    MIT Room
    E15-15-353
    Phone
    (917) 605-7755
    calabiac@media.mit.edu
  • Alex Pentland - 2019 ICT Conference

    April 16, 2019Conference Video Duration: 38:19

    MIT TRUST::DATA CONSORTIUM

    Developing privacy-preserving identity systems and safe distributed computation, enabling an Internet of Trusted Data. The Trust::Data Consortium addresses the growing tension between societal data proliferation and data security by developing specifications, software, tools and documentation that help organizations adopt a holistic approach to cyber protection. Trust::Data is building new models for digital identity, data provenance, universal access, and secure privacy-preserving transactions to harness the future potential of global data sharing.
     
    2019 MIT Information and Communication Technologies Conference
  • Desiree Plata Card
    September 19, 2022 ILP Faculty Feature

    Methane Research Takes on New Urgency at MIT

    Desiree Plata

  • 11.15-16.23-RD- Fintech-Innovation

    November 16, 2023Conference Video Duration: 62:44
    Fintech Innovation: The Nexus of Technology and Policy 
  • Mary
    Wiltrout

    Lecturer in Digital Learning
    Primary DLC
    Department of Biology

    Contact

    MIT Room
    68-102B
    Phone
    (617) 452-2940
    mew27@mit.edu
  • The Future of Energy Innovation - Startup Lightning Talks

    March 1, 2018

    Introduced by Marcus Dahllof, Program Director, MIT Startup Exchange 

    The wireless energy future, Alex Gruzen, CEO, Witricity
    Managing energy asset infrastructure digitally, Fausto Morales, Data Scientist at Arundo Analytics (STEX25)
    Monitoring industrial equipment through IoT, Jon Garrity, Co-founder & CEO, TagUp (STEX25)
    Big-data image analysis for unconventional oil & gas reservoirs, Maren Cattonar, Co-founder, Automated-Analytics     
    Mission control for Energy R&D labs, Siping Wang, CTO & co-founder, TetraScience (STEX25) 
    What 3D printing of metal parts means for the energy industry, Duncan McCallum, CEO, Digital Alloys 
    Soldier Nanotechnologies - generating energy on the fly, Dr. Veronika Stelmakh, Co-founder & CEO, Mesodyne

  • Innovations at Interfaces: Energy & Sustainability to Biomedical Technologies: Kripa Varanasi

    January 24, 2025Conference Video Duration: 44:9

    Innovations at Interfaces: Energy & Sustainability to Biomedical Technologies
    Kripa Varanasi
    Professor, MIT Department of Mechanical Engineering

    Physico-chemical interactions at interfaces are ubiquitous across multiple industries, including energy, decarbonization, healthcare, water, agriculture, transportation, and consumer products. In this talk, Professor Varanasi summarizes how surface/interface chemistry, morphology, and thermal and electrical properties can be engineered across multiple length scales to achieve significant efficiency enhancements in a wide range of processes. These approaches involve both passive and active manipulation of interfaces.

    Varanasi first describes a variety of slippery interfaces that can significantly reduce interfacial friction for efficient dispensing of viscous products, enhance thermal transport in heating and cooling systems, provide anti-icing solutions, and create self-healing barriers for protection against scaling. Active strategies are also discussed, such as engineering charge transfer to alter multiphase flows for applications like water harvesting, anti-dust systems for solar panels, and reducing agricultural runoff to address critical challenges at the energy-water and water-agriculture nexus. Varanasi highlights efforts in decarbonization and the energy transition, focusing on CO₂ capture and conversion as well as battery energy storage systems. These efforts include enhancing electrochemical and biological methods for CO₂ capture and conversion, with recent advancements in CO₂ capture from point sources and direct air capture (DAC), marine CO₂ removal via a pH-swing process using electroactive materials, and electrochemical CO₂ conversion to fuels, ethylene, and other valuable products. Additionally, Varanasi introduces a high-performance rechargeable battery energy storage solution that is free of lithium and cobalt, intrinsically non-flammable, and ideal for stationary storage applications, including utility grids, home storage, microgrids, data centers, warehouses, manufacturing facilities, and chemical plants.

    In parallel, Varanasi discusses ongoing research in biomedical technologies, spanning biomanufacturing to ovarian cancer treatment. Surface engineering strategies are presented to prevent thrombosis and biofilm formation, tailor cell adhesion and protein adsorption, and enhance the biomanufacturing value chain. Inspired by slippery surface technologies, Varanasi introduces a novel methodology for subcutaneous injection of highly viscous biologics, expanding the range of injectable formulations and improving healthcare accessibility. Innovative approaches to protein separation via undersaturated crystallization, promoted through in-situ templating, are also described, enabling continuous biomanufacturing. Passive and active techniques for enhancing bioreactors by preventing foam buildup are detailed, with a non-invasive approach that eliminates the need for defoamers, preventing cell death caused by bubble rupture and optimizing reactor space utilization.

    Throughout the talk, Varanasi addresses manufacturing and scale-up strategies, robust materials and processes, and entrepreneurial efforts to translate these technologies into impactful products and markets. Insights from the start-up companies co-founded by Varanasi are interwoven with these discussions.

Pagination

  • of 221
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • Next page

Sign up to receive news and updates from MIT Industrial Liaison Program Sign up

  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
  • LinkedIn
  • YouTube
  • Twitter
Home

1 Main Street
12th Floor, E90-1201

Cambridge, MA 02142

Privacy Policy

Accessibility

617-253-2691
ask-ilp@mit.edu

MIT OCR Logo