Skip to main content

MIT Corporate Relations

MIT Corporate Relations
MIT Logo
  • Read
  • Watch
  • Attend
  • About
  • Connect
  • MIT Startup Exchange
Search
  • Sign-In
  • Register
MIT ILP Home
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
User Menu and Search
  • Sign-In
  • Register
MIT ILP Home
Toggle menu
  • Sign-in
  • Register
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange

Search Results


Filter Results
  • Show:
  • 10
  • 50
  • 100

Filter Results

Narrow your results
  • News (277)
  • Videos (433)
  • Events (141)
  • Research (1059)
  • Faculty (317)
  • Members (1)
2244 search results found
  • 2024 MIT Sustainability Conference: MIT Climate & Sustainability Consortium Project Highlights

    October 22, 2024Conference Video Duration: 34:22

    MIT Climate & Sustainability Consortium Project Highlights
    Introduction and Update
    Jeremy Gregory
    Executive Director, MIT Climate & Sustainability Consortium

    The Climate and Sustainability Implications of Generative AI
    Noman Bashir
    Computing & Climate Impact Fellow, MIT Climate & Sustainability Consortium

    The rapid expansion of generative artificial intelligence (Gen-AI) neglects consideration of negative effects alongside expected benefits. This incomplete cost calculation promotes unchecked growth and a risk of unjustified techno-optimism with potential environmental consequences, including expanding demand for computing power, larger carbon footprints, and an accelerated depletion of natural resources. The current siloed focus on efficiency improvements results instead in increased adoption without fundamentally considering the vast sustainability implications of Gen-AI. 

    In this talk, I will propose that responsible development of Gen-AI requires a focus on sustainability beyond only efficiency improvements and necessitates benefit-cost evaluation frameworks that encourage (or require) Gen-AI to develop in ways that support social and environmental sustainability goals alongside economic opportunity. However, a comprehensive value consideration is complex and requires detailed analysis, coordination, innovation, and adoption across diverse stakeholders. Engaging stakeholders, including technical and sociotechnical experts, corporate entities, policymakers, and civil society, in a benefit-cost analysis would foster development in the most urgent and impactful directions while reducing unsustainable practices. More details are in our white paper, which is accessible at MIT Gen-AI Sustainability White Paper.

    A Cautionary Tale about Deep Learning-based Climate Emulators
    Björn Lütjens
    Postdoctoral Associate, MIT Department of Earth, Atmospheric, and Planetary Sciences

    Climate models are computationally very expensive for exploring the impacts of climate policies. For example, simulating the impacts of a single policy emission scenario can take multiple weeks and cost hundreds of thousands of USD in computing. Compellingly, deep learning models can now forecast the weather in seconds rather than hours in comparison to conventional weather models and are being proposed to achieve similar reductions by approximating climate models. Climate approximations or emulators, however, have already been developed since the 1990s and I will present how we implemented a linear regression-based emulator that outperforms a novel 100M-parameter transformer-based deep learning emulator on the most common climate emulation benchmark. I will use our results to discuss more nuanced insights highlighting how chaotic dynamics influence emulator performance and use cases where deep-learning emulators can improve existing linear emulators. 

    Collaborative Development of an Interactive Decision Support Tool for Trucking Fleet Decarbonization
    Danika MacDonell
    Impact Fellow, MIT Climate & Sustainability Consortium

    This presentation shares the journey of creating an interactive geospatial decision support tool in close collaboration with industry and academic partners of the MIT Climate & Sustainability Consortium. The tool leverages comprehensive public data on freight flows, costs, emissions, infrastructure, and regulatory incentives. Integrating key insights and methodologies from our partners, it aims to assist trucking industry stakeholders in identifying and assessing strategies to transition fleets to low-carbon energy carriers.

  • August 1, 2008

    Linking Customer Loyalty to Growth

  • Wojciech
    Matusik

    Cadence Design Systems Professor of Electrical Engineering and Computer Science
    Primary DLC
    Department of Electrical Engineering and Computer Science

    Contact

    MIT Room
    32-312
    Phone
    (617) 324-8432
    wojciech@mit.edu
  • February 18, 2009
    Department of Electrical Engineering and Computer Science

    Plum: Achieving Truly Personal Interaction from Long-Term User Models

    Principal Investigator David Karger

  • Lizhong
    Zheng

    Professor of Electrical Engineering
    Primary DLC
    Department of Electrical Engineering and Computer Science

    Contact

    MIT Room
    36-660
    Phone
    (617) 452-2941
    lizhong@mit.edu

    Assistant

    Assistant Name
    Drew Houser
    Assistant phone number
    (617) 253-6171
    drewh@mit.edu
  • Mary
    Larsen
    Bouxsein

    HST Affiliated Faculty
    Primary DLC
    Harvard-MIT Program in Health Sciences and Technology
  • Eric
    A
    von Hippel

    T Wilson (1953) Professor of Management
    Primary DLC
    MIT Sloan School of Management

    Contact

    MIT Room
    E62-464
    Phone
    (617) 253-7155
    evhippel@mit.edu

    Assistant

    Assistant Name
    Ryan Harrington
    Assistant phone number
    (617) 715-5675
    ryanharr@mit.edu
  • Andrew
    W
    Lo

    Charles E and Susan T Harris Professor of Finance
    Primary DLC
    MIT Sloan School of Management

    Contact

    MIT Room
    E62-618
    Phone
    (617) 253-0920
    alo@mit.edu

    Assistant

    Assistant Name
    Kate Lyons
    Assistant phone number
    (617) 715-4840
    klyons1@mit.edu
  • P
    Christopher
    Zegras

    Professor of Urban Planning, Transportation and Engineering Systems
    Primary DLC
    Department of Urban Studies and Planning

    Contact

    MIT Room
    7-337
    Phone
    (617) 452-2433
    czegras@mit.edu
  • Sanjay
    E
    Sarma

    Fred Fort Flowers (1941) and Daniel Forst Flowers (1941) Professor of Mechanical Engineering
    Primary DLC
    Department of Mechanical Engineering

    Contact

    MIT Room
    35-206
    Phone
    (617) 253-1925
    sesarma@mit.edu

    Assistant

    Assistant Name
    Kaila House
    Assistant phone number
    (617) 253-1960
    kmhouse@mit.edu

Pagination

  • of 225
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • Next page

Sign up to receive news and updates from MIT Industrial Liaison Program Sign up

  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
  • LinkedIn
  • YouTube
  • Twitter
Home

1 Main Street
12th Floor, E90-1201

Cambridge, MA 02142

Privacy Policy

Accessibility

ask-ilp@mit.edu

MIT OCR Logo