Contact
The future of materials science lies in the seamless integration of molecular precision, functional performance, and nanoscale understanding. This session brings together leading MIT researchers whose work spans the full spectrum of advanced materials innovation—from the bottom-up design of molecular architectures to the real-world deployment of materials and the tools that reveal their behavior at the atomic scale.
Modern-day transmission electron microscopes show us the position and nature of the individual atoms within a material. But better still, we can record movies that show how atoms are rearranged during chemical reactions. This is especially relevant to energy-related materials, where energy storage is often accompanied by changes in atomic configuration; in microelectronics, where processing must create precisely defined nanostructures; in structural materials such as cement during hydration, and in quantum materials, where the details of atomic structure determine how well a qubit will work. Through these and other examples, I will show how time-resolved electron microscopy helps us develop new materials and optimize the performance of materials we already know.
The Agentic Web holds transformative promise for the democratization of AI, serve as antidote to AGI and unlock trillions of dollars of economic benefits. But it faces threats of fragmentation and centralization as the Internet of AI Agents evolves. Universal interoperability, permissionless innovation, and user sovereignty over data and agents will require transparent protocols and rapid advances to reconcile the needs of a diverse field.
Networked AI Agents in Decentralized Architecture (NANDA) at MIT offers a three-phase roadmap for this emerging landscape. Phase 1 establishes foundation elements—secure agent identity, discovery indices, and interoperability—via open protocols designed to support trust and accountable governance. Phase 2 introduces economic structures such as knowledge pricing, decentralized marketplaces, and reputation-based transactions, enabling agents to coordinate and exchange value at scale. Phase 3 aims for the emergence of agent societies, fostering large-scale co-learning, adaptive population models, and collaborative networks to tackle complex real-world tasks.
This framework is informed by academic work from the Raskar Lab, including algorithmic advances in Automated Machine Learning (AutoML) tailored for distributed health data, split learning for privacy-preserving model training, formal methods for dynamic knowledge valuation, and techniques for co-learning and collaborator selection in decentralized settings. Ensuring the agentic web remains open, safe, and transparent, NANDA’s development builds upon open standards, participatory governance, and research-driven safeguards.
Growing satellite constellations in Low Earth Orbit are taking advantage of the lower cost of launch and commercial electronics and components. They leverage intersatellite connectivity and increased onboard compute capability to improve communications and Earth observations. We discuss overcoming the challenges of the space environment and enabling technologies for the future, such as laser communications, dynamic tasking algorithms, direct to cellular, and in-space robotic assembly.
Methane is a potent greenhouse gas emitted from a wide range of human activities including oil and gas production, coal mining, waste management, and agriculture. Satellites have unique capabilities to quantify and attribute methane emissions worldwide. In this talk, I will discuss recent advances in satellite remote sensing of methane emissions, including targeted observation of individual point sources, global mapping of large emitters with land-imaging satellites, real-time tracking of extreme releases from geostationary orbit, and continuous monitoring of total regional emissions from oil and gas fields.
The new space economy is currently experiencing a rapid expansion, with a compound annual growth rate estimated between 7% and 11%. This significant growth encompasses an increasing number of launches, with projections indicating daily launches to space by 2027, as well as a substantial rise in the number of operational satellites. This presentation will provide an overview of the new space economy and elaborate on its co-existence with the traditional government-driven space enterprise. One of the direct consequences of this growth is an increase in the resident space object (RSO) population, underscoring the critical need for enhanced and improved Space Situational Awareness. We will demonstrate how the integration of ground-based radar and optical observations with on-orbit optical sensing can lead to more effective decision-making for collision avoidance maneuvers and other crucial operational considerations.
In this dynamic talk, Prof. Dennis Whyte, MIT Plasma Science and Fusion Center, presents a compelling vision for fusion energy as the transformative solution to global energy and climate challenges. He explains how fusion—mimicking the power of stars—offers a carbon-free, virtually limitless, and safe energy source that can scale globally. Prof. Whyte highlights recent breakthroughs at MIT, including the development of high-temperature superconducting magnets that drastically reduce the size and cost of fusion reactors. These innovations have led to the creation of SPARC, a compact fusion experiment, and the spinout of Commonwealth Fusion Systems, aimed at commercializing fusion by the early 2030s. Emphasizing fusion's potential to decarbonize not just electricity, but also heavy industry and fuel production, Whyte outlines a clear, science-driven pathway to realizing practical, scalable fusion power within this decade.
The next wave of innovation is being shaped by AI systems that don’t just respond; they act. From agentic AI that collaborates and makes decisions autonomously to decentralized architectures that push intelligence to the edge, MIT researchers are leading the charge. They are reimagining how organizations secure, interpret, and operationalize data. This track brings together thought leaders from across MIT to explore the strategic, organizational, and human implications of AI at scale. Topics will include quantum-safe infrastructure, explainable AI, cyber-physical resilience, agent-based platforms, and the role of trust, transparency, and ethics in intelligent systems. For enterprises navigating an era defined by autonomy, agility, and risk, this track connects frontier research with real-world impact.
As AI becomes increasingly autonomous and decentralized, global enterprises must rethink how intelligence is built, governed, and scaled. This closing discussion brings together corporate, academic, research, and entrepreneurial perspectives to explore practical strategies for integrating agentic and distributed AI systems across complex organizations. Attendees will gain insight into how leading thinkers are addressing questions of trust, transparency, and control, balancing innovation with accountability to create resilient, adaptive, and competitive enterprises in a future defined by intelligent autonomy.