Principal Investigator Mark Bathe
Project Start Date July 2020
Natural photosynthetic complexes consist of structured nanoscale assemblies of chlorophyll molecules that facilitate photon adsorption and energy transfer for the production of the chemical fuel ATP, which is the origin of energy for life on planet earth. Programmed self-assembly of synthetic DNA into precise 2D and 3D nanoscale architectures that mimic natural light-harvesting systems can now be used to organize synthetic chromophores to replicate key aspects of bacterial photosynthetic systems, controlling how energy and quantum information are transported at the nanoscale. In this research, we are making structured DNA assemblies with embedded chromophores to engineer new qubits (the information-bearing unit of quantum computers) to program new quantum information sensing, processing, and computing capabilities. Through our research, we might also discover new principles for efficiently harvesting energy from the sun.