Prof. Carlos M Portela

d'Arbeloff Career Development Assistant Professor of Mechanical Engineering

Primary DLC

Department of Mechanical Engineering

MIT Room: 1-304

Areas of Interest and Expertise

Architected Materials
Nanomechanics (Static and Dynamic)
Metamaterials

Research Summary

Portela’s research lies at the intersection of materials science, mechanics, and nano-to-macro fabrication with the objective of designing and testing novel materials -- with features spanning from nanometers to centimeters -- that yield unprecedented mechanical, optical, and acoustic properties.

Recent Work

  • Video

    99% Air - Nano-Engineering the Materials of the Future: Carlos M. Portela

    January 24, 2025Conference Video Duration: 42:47
    99% Air: Nano-Engineering the Materials of the Future
    Carlos M. Portela
    Robert N. Noyce Career Development Assistant Professor, MIT Department of Mechanical Engineering

    Architected materials—i.e., materials whose three-dimensional (3D) micro- or nanostructure has been engineered to attain a specific purpose—are ubiquitous in nature and have enabled properties that are unachievable by all other existing materials. Their concept relies on maximizing performance while requiring a minimal amount of material. Several human-made 3D architected materials have been reported to enable novel mechanical properties such as high stiffness-to-weight ratios or extreme resilience, especially when nanoscale features present. However, most architected materials have relied on advanced additive manufacturing techniques that are not yet scalable and yield small sample sizes. Additionally, most of these nano- and micro-architected materials have only been studied in controlled laboratory conditions, while our understanding of their performance in real-world applications requires attention.

    In this talk, we will explain the concept of architected materials, providing various examples that we routinely fabricate and test in our laboratory at MIT, and we will discuss how nanoscale features significantly enhance their performance. We will also discuss ongoing research directions that will not only allow us to scale-up their fabrication, but also understand how they perform in realistic conditions outside the laboratory—towards contributing to more efficient material solutions in industry and beyond.

    12.5.22-Paris-Portela

    December 5, 2022Conference Video Duration: 37:45
    99% Air:  Nano-Architected Materials 

    4.13.22-Build.nano-Carlos-Portela

    April 13, 2022Conference Video Duration: 15:29
    Carlos Portela
    d’Arbeloff Career Development Assistant Professor, MIT Department of Mechanical Engineering

    Taking 3D Architected Materials Out of the Lab and Into the Real World

    March 9, 2022MIT Faculty Feature Duration: 17:26

    Carlos Portela
    d’Arbeloff Career Development Assistant Professor, Department of Mechanical Engineering.