Principal Investigator Jeehwan Kim
Over the past few decades, the levelized cost of energy for solar cells has decreased rapidly leading to the global average solar module cost of ~1 $/W. However, despite these advances, grid parity remains a goal for the future. There is still a substantial room for improving the solar cell efficiency, as the performance gap between the best research cell and the Shockley–Queisser limit is still 20-50%. Our group investigate nanotechnology for reducing both this performance gap and the module cost by increasing the efficiency of low-cost solar cells. Our current interests are as following: i) Geometry modification for efficiency enhancement via constructing high aspect-ratio three-dimensional solar cells, ii) Work-function engineering of carbon-based transparent electrode via plasmonic gold nanodots, and iii) Monolithic integration of organic-inorganic hybrids