Principal Investigator Dirk Englund
The world of quantum mechanics holds enormous potential to address unsolved problems in communications, computation, precision measurements, and machine learning/AI. Dr. Englund's QP-Group at MIT pursues experimental and theoretical research towards machine learning hardware and critical quantum technologies (computing, networking, sensing) by precision control of photons and atomic systems, combining techniques from atomic physics, optoelectronics, and modern semiconductor devices. In this talk, Dr. Englund will share some of the latest research conducted by his group at MIT and their potential applications.
The Internet is among the most significant inventions of the 20th Century. We are now poised for the development of a quantum internet to exchange quantum information and distribute entanglement among quantum computers that could be great distances apart. This kind of quantum internet would have a range of applications that aren’t possible in a classical world, including long-distance unconditionally-secure communication, precision sensing and navigation, and distributed quantum computing. But we still need to develop or perfect many types of components and protocols to build such a quantum internet. This talk will consider some of these components, including quantum memories based on atomic defects in semiconductors, circuits for manipulating single electronic and nuclear spins, efficient spin-photon interfaces, and photonic integrated circuits. The talk will also provide an overview of quantum communications protocols that are now running in a Boston-area quantum network.