Principal Investigator Kevin Esvelt
Encoding the CRISPR genome editing system in an organism causes it to edit the genomes of its descendants over successive generations, a form of 'gene drive' that amounts to a find-and-replace function capable of editing wild populations. Imagine a world in which mosquitoes are programmed to dislike the taste of humans, mice can't give ticks Lyme disease, and pests are precisely controlled by limiting their fertility, obviating both environmentally damaging pesticides and animal suffering. But this form of gene drive is likely to spread to every population of the target species in the world, ignoring all borders and impacting everyone sharing an ecosystem. Future public perception of CRISPR and biotech will be critically dependent on initial applications of gene drive. Can scientists ethically conduct ecological engineering research behind closed doors? Is it possible for many nations to agree without being able to conduct a field trial? By developing localized 'daisy drive' systems in collaboration with potential early adopters, we aim to give every community the opportunity to control its own shared environment without forcing their choices on others, to obviate the need for standard CRISPR-based gene drive except in direst need, and to establish a new model of open and responsive science and ecotechnology development.