Prof. Mark T Harnett

Associate Professor of Brain and Cognitive Sciences

Primary DLC

Department of Brain and Cognitive Sciences

MIT Room: 46-6143

Research Summary

Professor Harnett studies how the biophysical features of individual neurons, including ion channels, receptors, and membrane electrical properties, endow neural circuits with the ability to process information and perform the complex computations that underlie behavior. The laboratory focuses on the role of dendrites, the elaborate tree-like structures through which neurons receive the vast majority of their synaptic inputs.

The thousands of inputs a single cell receives can interact in complex ways that depend on their spatial arrangement and on the biophysical properties of their respective dendrites. For example, operations such as coincidence detection, pattern recognition, input comparison, and simple logical functions can be carried out locally within and across individual branches of a dendritic tree. Harnett addresses the hypothesis that the brain’s computational power arises from these fundamental integrative operations within dendrites. He focuses in particular on sensory processing and spatial navigation, with the goal of understanding the mechanistic basis of these brain functions.

Recent Work

  • Video

    2024 MIT R&D Conference: Track 4 - Healthcare - Neural Computation Underlying Behavior

    November 19, 2024Conference Video Duration: 23:13
    Neural Computation Underlying Behavior
    Mark Harnett
    Associate Professor, MIT Department of Brain and Cognitive Sciences
    Investigator, McGovern Institute for Brain Research

    The thousands of inputs a single neuronal cell receives can interact in complex ways that depend on their spatial arrangement and on the biophysical properties of their respective dendrites. For example, operations such as coincidence detection, pattern recognition, input comparison, and simple logical functions can be carried out locally within and across individual branches of a dendritic tree. In this talk, we will present the hypothesis that the brain leverages these fundamental integrative operations within dendrites to increase the processing power and efficiency of neural computation. We will focus on sensory processing and spatial navigation, with the goal of understanding the mechanistic basis of these brain functions.