Where Industry Meets Innovation

  • Contact Us
  • sign in Sign In
  • Sign in with certificate
mit campus

Past Conferences

Conference Details - Agenda

ILP Conference overview header image

2017 MIT Health Sensing & Imaging Conference

Sept. 19-20, 2017
Day 01 Day 02 | All

8:00 - 8:50

Registration and Breakfast

8:50 - 9:00

Welcome and Introduction

9:00 - 9:45

Engineering the Nanoparticle Corona for Sensors at New Biological Interfaces
Our lab at MIT has been interested in how the nanoparticle corona – the region of adsorbed molecules surrounding the particle surface - can be engineered for molecular recognition. We have recently introduced a method we call CoPhMoRe or Corona Phase Molecular Recognition for discovering synthetic, heteropolymer corona phases that form molecular recognition sites at the nanoparticle interface, selected from a heteropolymer library. We show that certain synthetic heteropolymers , once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. We have a growing list of biomolecules that we can detect using this approach including riboflavin, L-thyroxine, dopamine, nitric oxide, sugar alcohols, estradiol, as well as proteins such as fibrinogen. The results have significant potential in light of the fact that nanoparticles such as single walled carbon nanotubes can be interfaced to biological systems at the sub-cellular level, with unprecedented sensitivity. Several recent demonstrates indicate that spatial and temporal information on cellular chemical signaling can be obtained using arrays of such sensors. Other examples including sensor tattoos for mice, stable for more than 400 days in-vivo, will be shown. Lastly, I will highlight recent advances to control the trafficking and localization of nanoparticle systems in living plants using a mechanism that we call Lipid Exchange Envelope Penetration (LEEP). We demonstrate a living plant, interfaced with multiple nanoparticle types that can detect explosives, ATP and dopamine within or from outside the plant, and communicate this information to a user’s cell phone. Engineering the nanoparticle corona in this way offers significant potential to translate sensor technology to previously inaccessible environments.
Read More

9:45 - 10:30

Artificial Intelligence for Medical Images
Advances in optics, biological sensing, medical imaging technologies, high throughput genetic sequencing is leading to massive datasets, which need to be analyzed. However, current Artificial Intelligence algorithms usually require 1000’s of examples of well-annotated datasets for high accuracy classification. Fluorescent biomarkers are important indicators of disease such as oral cancer, but imaging them can require specialized and often-expensive devices. Medical images, if diagnosed early with biomarker images and expert knowledge, can be valuable to prevent occurrences of serious systemic illnesses. In this lecture, we will discuss two convolutional neural network classifiers trained with disease signatures and fluorescent biomarker images to identify biomarkers in white light images as a per-pixel binary classification task. Once trained, the classifiers predict the location and intensity of fluorescent biomarkers in white light images without requiring specialized biomarker imaging devices or expert intervention. This generalized approach can be useful in other domains where diagnostic biomarker predicting can augment expert knowledge using standard white light images.

Read More

10:30 - 11:00

Networking Break

11:00 - 11:45

Making Invisible Obvious: Computational Analysis of Medical Images
Polina Golland will discuss her group's research in computational analysis of MRI scans that aims to provide accurate measurements of healthy anatomy and physiology, and biomarkers of pathology. Applications range from fetal development to aging brain.

11:45 - 12:30

It’s a Small World: The Power of Miniaturization in Cancer Diagnostics and Beyond
Early and accurate detection of cancer represents an enormous opportunity for sensing technologies to impact patients' lives. I will discuss several examples of diagnostic technologies developed in the Bhatia lab that employ nanosensors to detect tumors using a simple urine test for readout. This platform technology uses nanosensors to detect enzyme activity associated with cancer invasion, and generate bar-coded reporters that can be detected by multiplexed mass spectrometry or antibody-based methods such as lateral flow assays. I will close the presentation with an introduction to the Marble Center for Cancer Nanomedicine, a new growing resource for the nanomedicine community.
Read More

12:30 - 1:30


1:30 - 2:15

Molecular Electronics for Chemical Sensors
This lecture will detail the creation of ultrasensitive sensors based on electronically active conjugated polymers (CPs) and carbon nanotubes (CNTs). A central concept that a single nano- or molecular-wire spanning between two electrodes would create an exceptional sensor if binding of a molecule of interest to it would block all electronic transport. The use of molecular electronic circuits to give signal gain is not limited to electrical transport and CP-based fluorescent sensors can provide ultratrace detection of chemical vapors via amplification resulting from exciton migration. Nanowire networks of CNTs provide for a practical approximation to the single nanowire scheme. These methods include abrasion deposition and selectivity is generated by covalent and/or non-covalent binding selectors/receptors to the carbon nanotubes. Sensors for a variety of materials and cross-reactive sensor arrays will be described. The use of carbon nanotube based gas sensors for the detection of ethylene and other gases relevant to agricultural and food production/storage/transportation are being specifically targeted and can be used to create systems that increase production, manage inventories, and minimize losses.
Read More

2:15 - 3:00

Transforming Nanotechnologies into Applications
While trillions of sensors that will soon connected to the “Internet of Everything” (IoE) promise to transform our lives, they simultaneously pose major obstacles, which we are already encountering today. The massive amount of generated raw data (i.e., the “data deluge”) is quickly exceeding computing capabilities, and cannot be overcome by isolated improvements in sensors, transistors, memories, or architectures alone. Rather, an end-to-end approach is needed, whereby the unique benefits of new emerging nanotechnologies – for sensors, memories, and transistors – are exploited to realize new system architectures that are not possible with today’s technologies. However, emerging nanomaterials and nanodevices suffer from significant imperfections and variations. Thus, realizing working circuits, let alone transformative nanosystems, has been infeasible. In this talk, I present a path towards realizing these future systems in the near-term, and show how based on the progress of several emerging nanotechnologies (carbon nanotubes for logic, non-volatile memories for data storage, and new materials for sensing), we can begin realizing these systems today. As a case-study, I will discuss how by leveraging emerging nanotechnologies, we have realized the first monolithically-integrated three-dimensional (3D) nanosystem architectures with vertically-integrated layers of logic, memory, and sensing circuits. With dense and fine-grained connectivity between millions of on-chip sensors, data storage, and embedded computation, such nanosystems can capture terabytes of data from the outside world every second, and produce “processed information” by performing in-situ classification of the sensor data using on-chip accelerators. As a demonstration, we tailor a demo system for gas classification, for real-time health monitoring from breath.
Read More

3:00 - 3:30

Networking Break

3:30 - 4:15

Toward nanocrystal sensors
Our laboratory focuses on the science and applications of nanocrystals, especially semiconductor nanocrystal (aka quantum dots). Our research ranges from the very fundamental to applications in electro-optics and biology. There is an ongoing effort to address the challenges of making new compositions and morphologies of nanocrystals and nanocrystal heterostructures, and new ligands so that the nanocrystals can be incorporated into hybrid organic/inorganic devices, or biological systems. We are collaborating with a number of biology and medical groups to design nanocrystal probes that meet specific challenges.
Read More

4:15 - 5:00

Passive In-Home Patient Monitoring: From Wearables to Invisibles
This talk introduces Emerald a novel MIT technology for in-home non-intrusive patient monitoring. Th Emerald device is a WiFi-like box that runs customized machine learning algorithms to learn digital biomarkers from the wireless signals in the patient's home. It can remotely monitor the patient’s gait speed, falls, respiratory signal, heart rate, and sleep quality and stages. The sensing is completely passive –i.e., the patient can go about her normal life without having to wear any sensors on her body, write a diary, or actively measure herself.

5:00 - 6:30

Networking Reception