Challenges and Opportunities for Insect-Scale Autonomous Aerial Robots | Kevin Chen

Conference Video|Duration: 46:22
January 27, 2026
Please login to view this video.
  • Video details

    Challenges and Opportunities for Insect-Scale Autonomous Aerial Robots

    Kevin Chen
    Associate Professor, MIT Department of Electrical Engineering and Computer Science

    Flapping-wing flight at the insect scale is incredibly challenging. Insect muscles not only power flight but also absorb in-flight collisional impact, making these tiny flyers simultaneously agile and robust. In contrast, existing aerial robots have not demonstrated these properties. Rigid robots are fragile against collisions, while soft-driven systems suffer from limited speed, precision, and controllability. In this talk, I will describe our effort in developing a new class of bio-inspired micro-flyers, ones that are powered by high bandwidth soft actuators and equipped with rigid appendages. We constructed the first heavier-than-air aerial robot powered by soft artificial muscles, which can demonstrate a 1000-second hovering flight. In addition, our robot can recover from in-flight collisions and perform somersaults within 0.10 seconds. This work demonstrates for the first time that soft aerial robots can achieve agile and robust flight capabilities absent in rigid-powered micro-aerial vehicles, thus showing the potential of a new class of hybrid soft-rigid robots. I will also discuss our recent progress in incorporating onboard sensors, electronics, and batteries.

Locked Interactive transcript
Please login to view this video.
  • Video details

    Challenges and Opportunities for Insect-Scale Autonomous Aerial Robots

    Kevin Chen
    Associate Professor, MIT Department of Electrical Engineering and Computer Science

    Flapping-wing flight at the insect scale is incredibly challenging. Insect muscles not only power flight but also absorb in-flight collisional impact, making these tiny flyers simultaneously agile and robust. In contrast, existing aerial robots have not demonstrated these properties. Rigid robots are fragile against collisions, while soft-driven systems suffer from limited speed, precision, and controllability. In this talk, I will describe our effort in developing a new class of bio-inspired micro-flyers, ones that are powered by high bandwidth soft actuators and equipped with rigid appendages. We constructed the first heavier-than-air aerial robot powered by soft artificial muscles, which can demonstrate a 1000-second hovering flight. In addition, our robot can recover from in-flight collisions and perform somersaults within 0.10 seconds. This work demonstrates for the first time that soft aerial robots can achieve agile and robust flight capabilities absent in rigid-powered micro-aerial vehicles, thus showing the potential of a new class of hybrid soft-rigid robots. I will also discuss our recent progress in incorporating onboard sensors, electronics, and batteries.

Locked Interactive transcript