2022-Japan-Jeehwan-Kim

Conference Video|Duration: 34:08
January 20, 2022
Please login to view this video.
  • Video details
    For future of electronics such as bioelectronics, 3D integrated electronics, and bendable electronics, needs for flexibility and stackability of electronic products have substantially grown up. However, conventional wafer-based single-crystalline semiconductors cannot catch up with such trends because they are bound to the thick rigid wafers such that they are neither flexible nor stackable. Although polymer-based organic electronic materials are more compatible as they are mechanically complaint and less costly than inorganic counterparts, their electronic/photonic performance is substantially inferior to that of single-crystalline inorganic materials. For the past half a decade, my research group at MIT has focused on mitigating such performance-mechanical compliance dilemma by developing methods to obtain cheap, flexible, stackable, single-crystalline inorganic systems. In today’s talk, I will discuss about our strategies to realize such a dream electronic system and how these strategies unlock new ways of manufacturing advanced electronic systems. I will highlight our 2D materials-based layer transfer (2DLT) technique that can produce single-crystalline freestanding membranes from any compound materials with their excellent semiconducting performance. In addition, I will present unprecedented artificial heterostructures enabled by stacking of those freestanding 3D material membranes, e.g., world’s smallest vertically-stacked full color micro-LEDs, world’s best multiferroic devices, battery-less wireless e-skin, and reconfigurable hetero-integrated chips with AI accelerators.
Locked Interactive transcript
Please login to view this video.
  • Video details
    For future of electronics such as bioelectronics, 3D integrated electronics, and bendable electronics, needs for flexibility and stackability of electronic products have substantially grown up. However, conventional wafer-based single-crystalline semiconductors cannot catch up with such trends because they are bound to the thick rigid wafers such that they are neither flexible nor stackable. Although polymer-based organic electronic materials are more compatible as they are mechanically complaint and less costly than inorganic counterparts, their electronic/photonic performance is substantially inferior to that of single-crystalline inorganic materials. For the past half a decade, my research group at MIT has focused on mitigating such performance-mechanical compliance dilemma by developing methods to obtain cheap, flexible, stackable, single-crystalline inorganic systems. In today’s talk, I will discuss about our strategies to realize such a dream electronic system and how these strategies unlock new ways of manufacturing advanced electronic systems. I will highlight our 2D materials-based layer transfer (2DLT) technique that can produce single-crystalline freestanding membranes from any compound materials with their excellent semiconducting performance. In addition, I will present unprecedented artificial heterostructures enabled by stacking of those freestanding 3D material membranes, e.g., world’s smallest vertically-stacked full color micro-LEDs, world’s best multiferroic devices, battery-less wireless e-skin, and reconfigurable hetero-integrated chips with AI accelerators.
Locked Interactive transcript