05.21.24-Leading-Edge-Webinar-Digital-Health-and-Wellness-Xuanhe-Zhao

Conference Video|Duration: 25:22
May 21, 2024
  • Video details
    Continuous imaging of internal organs over days could provide unprecedented information about one’s health and diseases and shed new insights into developmental biology. However, this is unattainable with existing wearable devices. Here, we report a bioadhesive ultrasound (BAUS) device, which consists of a thin and rigid ultrasound probe robustly adhered to the skin via a soft, tough, anti-dehydrating, and bioadhesive couplant. The BAUS device provides 48-hour continuous and simultaneous imaging of multiple organs including blood vessels, muscle, heart, gastrointestinal tract, diaphragm, and lung for the first time. The BAUS device could enable diagnostic and monitoring tools for various diseases, including hyper/hypotension, neuromuscular disorders, cardiac diseases, digestive diseases, and COVID-19. The long-term time-series imaging data of multi-organ correlations could provide a new system-level insight into human physiology. I will conclude the talk by proposing two challenges in science, technology, and medicine:  

    • Can we continuously image the full human body over days to months?
    • Can we make ultrasound imaging an affordable wearable commodity for global health? 
  • Video details
    Continuous imaging of internal organs over days could provide unprecedented information about one’s health and diseases and shed new insights into developmental biology. However, this is unattainable with existing wearable devices. Here, we report a bioadhesive ultrasound (BAUS) device, which consists of a thin and rigid ultrasound probe robustly adhered to the skin via a soft, tough, anti-dehydrating, and bioadhesive couplant. The BAUS device provides 48-hour continuous and simultaneous imaging of multiple organs including blood vessels, muscle, heart, gastrointestinal tract, diaphragm, and lung for the first time. The BAUS device could enable diagnostic and monitoring tools for various diseases, including hyper/hypotension, neuromuscular disorders, cardiac diseases, digestive diseases, and COVID-19. The long-term time-series imaging data of multi-organ correlations could provide a new system-level insight into human physiology. I will conclude the talk by proposing two challenges in science, technology, and medicine:  

    • Can we continuously image the full human body over days to months?
    • Can we make ultrasound imaging an affordable wearable commodity for global health?