MIT Startup Exchange actively promotes collaboration and partnerships between MIT-connected startups and industry. Qualified startups are those founded and/or led by MIT faculty, staff, or alumni, or are based on MIT-licensed technology. Industry participants are principally members of MIT’s Industrial Liaison Program (ILP).
MIT Startup Exchange maintains a propriety database of over 1,500 MIT-connected startups with roots across MIT departments, labs and centers; it hosts a robust schedule of startup workshops and showcases, and facilitates networking and introductions between startups and corporate executives.
STEX25 is a startup accelerator within MIT Startup Exchange, featuring 25 “industry ready” startups that have proven to be exceptional with early use cases, clients, demos, or partnerships, and are poised for significant growth. STEX25 startups receive promotion, travel, and advisory support, and are prioritized for meetings with ILP’s 230 member companies.
MIT Startup Exchange and ILP are integrated programs of MIT Corporate Relations.
Thousands of exoplanets are known to orbit nearby stars and small rocky planets are established to be common. The ambitious goal of identifying a habitable or inhabited world is within reach. But how likely are we to succeed? The race to find habitable exoplanets has accelerated with the realization that “big Earths” transiting small stars can be both discovered and characterized with current technology. While future generations may use very large space-based telescopes to search to find signs of life amidst a yet unknown range of planetary environments, what will it take to identify such habitable worlds with the observations and theoretical tools available to us?
A million miles from Earth, NASA’s James Webb Space Telescope (JWST) will use infrared vision to detect the first, most distant stars and galaxies in our universe. The Webb Telescope will peer deep inside swirling disks of dust and gas encircling newborn stars where new planets are formed. It will measure the sizes of planets orbiting other stars and the compositions of their atmospheres. Seeking to answer a major question – are we alone in the universe? In this technical session, attendees will learn about JWST, by the numbers. What do 13.5 billion and 1.5 million (just to name a few) represent to JWST, the world’s largest space telescope to launch? This session will also highlight the latest integration photos of the telescope and detail the latest status of the program.
The demand for materials, particularly minerals and metals, has experienced an exceptional growth in the last decades. In parallel, the costs of the corresponding processing technologies have reached levels that are unsustainable for most countries. Increasing access to cost effective and clean electricity sets the stage for novel processes that can match new expectations from society. In this context, recent research and development results pertinent to materials processing are presented, in particular for oxides and sulfides. In parallel, novel experimental methods and predictive capacity for high temperature systems are shown, paving the way to transformative processes and materials.
Artificial intelligence is being embedded into products to save people time and money. Experts in many domains have already begun to see the results of this, from medicine to education to navigation. But these products are built using an army of data scientists and machine learning experts, and the rate at which these human experts can deliver results is far lower than the current demand. My lab at MIT, called Data to AI, wanted to change this. Recognizing the human bottleneck in creating these systems, a few years ago we launched an ambitious project: we decided “to teach a computer how to be a data scientist." Our goal was to create automated systems that can ask questions of data, come up with analytic queries that could answer those questions, and use machine learning to solve them—in other words, all the things that human data scientists do. After much research and experimentation, the systems we have developed now allow us to build end-to-end AI products that can solve a new problem in one day. In this talk, I will cover what these new technologies are, how we are using them to accelerate the design and development of AI products, and how you can take advantage of them to actually build AI products faster and cheaper.
Device performance is in most cases connected to the materials quality. In many cases, high quality materials are available, but at a cost that is commercially not viable. We have been working on improving the quality of germanium for use as a virtual substrate for III-V semiconductor materials and for active silicon-based photonic devices. Germanium as a virtual substrate would enable low cost, high efficiency solar cells as will be presented in one example. An example for advanced germanium based devices are single photon detectors, operating at room temperature in the near infrared.
Encoding the CRISPR genome editing system in an organism causes it to edit the genomes of its descendants over successive generations, a form of 'gene drive' that amounts to a find-and-replace function capable of editing wild populations. Imagine a world in which mosquitoes are programmed to dislike the taste of humans, mice can't give ticks Lyme disease, and pests are precisely controlled by limiting their fertility, obviating both environmentally damaging pesticides and animal suffering. But this form of gene drive is likely to spread to every population of the target species in the world, ignoring all borders and impacting everyone sharing an ecosystem. Future public perception of CRISPR and biotech will be critically dependent on initial applications of gene drive. Can scientists ethically conduct ecological engineering research behind closed doors? Is it possible for many nations to agree without being able to conduct a field trial? By developing localized 'daisy drive' systems in collaboration with potential early adopters, we aim to give every community the opportunity to control its own shared environment without forcing their choices on others, to obviate the need for standard CRISPR-based gene drive except in direst need, and to establish a new model of open and responsive science and ecotechnology development.