2020 Innovations in Management Hala Hanna
In collaboration with the Bouygues Group, we are pleased to invite our distinguished members and attendees to the latest edition of the annual MIT Paris Symposium, convened in partnership with MIT researchers. This year’s theme, Digital Twins & AI: Redesigning the Real World, will explore how these converging technologies are revolutionizing the built environment.
Contact
Eva Ponce Executive Director, MITx MicroMasters in Supply Chain Management Director, Omnichannel Distribution Strategies
Construction Tech is one of the fastest growing areas of venture capital funding in the US. With over three billion in investments over the past year it is clear that Construction Tech will soon impact the ways we deliver building of all sizes. Moving forward we need new, rich ideas in software development to solve many of the building industries toughest problems. The talk will present a framework for home delivery directly from computers. Larry will show how builders will design and construct buildings from digital files using systems similar to 3D Printing.
Innovations at Interfaces: Energy & Sustainability to Biomedical Technologies Kripa Varanasi Professor, MIT Department of Mechanical Engineering
Physico-chemical interactions at interfaces are ubiquitous across multiple industries, including energy, decarbonization, healthcare, water, agriculture, transportation, and consumer products. In this talk, Professor Varanasi summarizes how surface/interface chemistry, morphology, and thermal and electrical properties can be engineered across multiple length scales to achieve significant efficiency enhancements in a wide range of processes. These approaches involve both passive and active manipulation of interfaces.
Varanasi first describes a variety of slippery interfaces that can significantly reduce interfacial friction for efficient dispensing of viscous products, enhance thermal transport in heating and cooling systems, provide anti-icing solutions, and create self-healing barriers for protection against scaling. Active strategies are also discussed, such as engineering charge transfer to alter multiphase flows for applications like water harvesting, anti-dust systems for solar panels, and reducing agricultural runoff to address critical challenges at the energy-water and water-agriculture nexus. Varanasi highlights efforts in decarbonization and the energy transition, focusing on CO₂ capture and conversion as well as battery energy storage systems. These efforts include enhancing electrochemical and biological methods for CO₂ capture and conversion, with recent advancements in CO₂ capture from point sources and direct air capture (DAC), marine CO₂ removal via a pH-swing process using electroactive materials, and electrochemical CO₂ conversion to fuels, ethylene, and other valuable products. Additionally, Varanasi introduces a high-performance rechargeable battery energy storage solution that is free of lithium and cobalt, intrinsically non-flammable, and ideal for stationary storage applications, including utility grids, home storage, microgrids, data centers, warehouses, manufacturing facilities, and chemical plants.
In parallel, Varanasi discusses ongoing research in biomedical technologies, spanning biomanufacturing to ovarian cancer treatment. Surface engineering strategies are presented to prevent thrombosis and biofilm formation, tailor cell adhesion and protein adsorption, and enhance the biomanufacturing value chain. Inspired by slippery surface technologies, Varanasi introduces a novel methodology for subcutaneous injection of highly viscous biologics, expanding the range of injectable formulations and improving healthcare accessibility. Innovative approaches to protein separation via undersaturated crystallization, promoted through in-situ templating, are also described, enabling continuous biomanufacturing. Passive and active techniques for enhancing bioreactors by preventing foam buildup are detailed, with a non-invasive approach that eliminates the need for defoamers, preventing cell death caused by bubble rupture and optimizing reactor space utilization.
Throughout the talk, Varanasi addresses manufacturing and scale-up strategies, robust materials and processes, and entrepreneurial efforts to translate these technologies into impactful products and markets. Insights from the start-up companies co-founded by Varanasi are interwoven with these discussions.
This presentation will discuss how the COVID-19 pandemic will be like a bullet train to the future, dramatically accelerating many trends involving digital communication that were already underway and that will never return to the way they were before the pandemic. Examples discussed will include the kinds of jobs people will do, how and where they will work, how this will affect real estate, how people will shop and socialize, and how they will learn. The presentation will also suggest how new kinds of online work can help solve some of the near-term problems the pandemic creates.