Skip to main content

MIT Corporate Relations

MIT Corporate Relations
MIT Logo
  • Read
  • Watch
  • Attend
  • About
  • Connect
  • MIT Startup Exchange
Search
  • Sign-In
  • Register
MIT ILP Home
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
User Menu and Search
  • Sign-In
  • Register
MIT ILP Home
Toggle menu
  • Sign-in
  • Register
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange

Search Results


Filter Results
  • Show:
  • 10
  • 50
  • 100

Filter Results

Narrow your results
  • News (279)
  • Videos (454)
  • Events (144)
  • Research (1044)
  • Faculty (324)
  • Members (1)
2263 search results found
  • 2024 MIT Digital Technology & Strategy Conference: Generative Models as a Data Source for AI Systems

    September 17, 2024Conference Video Duration: 44:17

    Generative models can now produce realistic and diverse synthetic data in many domains. This makes them a viable choice as a data source for training downstream AI systems. Unlike real data, synthetic data can be steered and optimized via interventions in the generative process. I will share my view on how this makes synthetic data act like data++, data with additional capabilities. I will discuss the advantages and disadvantages of this setting, and show several applications toward problems in computer vision and robotics. 

  • 2024 MIT Digital Technology & Strategy Conference: Generative Models as a Data Source for AI Systems

    September 17, 2024Conference Video Duration: 44:17

    Phillip Isola
    Associate Professor, Department of Electrical Engineering and Computer Science

    Generative models can now produce realistic and diverse synthetic data in many domains. This makes them a viable choice as a data source for training downstream AI systems. Unlike real data, synthetic data can be steered and optimized via interventions in the generative process. I will share my view on how this makes synthetic data act like data++, data with additional capabilities. I will discuss the advantages and disadvantages of this setting, and show several applications toward problems in computer vision and robotics. 

  • 2024 MIT Digital Technology & Strategy Conference: Generative Models as a Data Source for AI Systems

    September 17, 2024Conference Video Duration: 44:17

    Generative Models as a Data Source for AI Systems

  • Ferrovial Digital Infrastructure

  • 3.16.21-Digital-William-Fischer

    March 16, 2021Conference Video Duration: 15:7

    William Fischer
    Senior Lecturer, Sloan School of Management

  • 10.25.23-Digital-Hopara

    October 25, 2023Conference Video Duration: 6:7
    Startup Lightening Talk
  • 10.25.23-Digital-MontBlancAI

    October 25, 2023Conference Video Duration: 5:2
    Startup Lightening Talk
  • 2020 Digital Transformation - Panel Discussion with Startups

    May 26, 2020Conference Video Duration: 25:18
    2020 Digital Transformation - Panel Discussion with Startups
  • SMR-Logo
    April 1, 2019

    Key Words for Digital Transformation

  • Digital Health and Wellness

    Tue, May 21, 2024 Webinar
    Leading Edge Webinar

    Explore cutting-edge human-computer interface technology and product advancements, covering areas such as soft materials development, digital fabrication methods, wearable bioadhesive ultrasound devices, emotion AI technologies, and the translation of wearables for monitoring vital functions and neurobiomarkers, with discussions on challenges, opportunities, and patient experience implications.

Pagination

  • of 227
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • Next page

Sign up to receive news and updates from MIT Industrial Liaison Program Sign up

  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
  • LinkedIn
  • YouTube
  • Twitter
Home

1 Main Street
12th Floor, E90-1201

Cambridge, MA 02142

Privacy Policy

Accessibility

ask-ilp@mit.edu

MIT OCR Logo