Skip to main content

MIT Corporate Relations

MIT Corporate Relations
MIT Logo
  • Read
  • Watch
  • Attend
  • About
  • Connect
  • MIT Startup Exchange
Search
  • Sign-In
  • Register
MIT ILP Home
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
User Menu and Search
  • Sign-In
  • Register
MIT ILP Home
Toggle menu
  • Sign-in
  • Register
  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange

Search Results


Filter Results
  • Show:
  • 10
  • 50
  • 100

Filter Results

Narrow your results
  • News (275)
  • Videos (412)
  • Events (131)
  • Research (1058)
  • Faculty (311)
  • Members (1)
2205 search results found
  • Stuart
    E
    Madnick

    John Norris Maguire Professor of Information Technologies
    Primary DLC
    MIT Sloan School of Management

    Contact

    MIT Room
    E62-422
    Phone
    (617) 253-6671
    smadnick@mit.edu

    Assistant

    Assistant Name
    Mimosa Nguyen-Ha
    Assistant phone number
    (617) 253-4936
    mimosa31@mit.edu
  • Collin
    M
    Stultz

    Nina T and Robert H Rubin Professor in Medical Engineering and Science
    Primary DLC
    Department of Electrical Engineering and Computer Science

    Contact

    MIT Room
    36-796
    Phone
    (617) 253-4961
    cmstultz@mit.edu

    Assistant

    Assistant Name
    Megumi Masuda-Loos
    Assistant phone number
    (617) 324-3542
    megumima@mit.edu
  • John
    M
    Reilly

    Senior Lecturer
    Primary DLC
    MIT Sloan School of Management

    Contact

    MIT Room
    E19-429L
    Phone
    (617) 253-8040
    jreilly@mit.edu

    Assistant

    Assistant Name
    Fannie Barnes
    Assistant phone number
    (617) 258-8618
    fbarnes@mit.edu
  • Gian Michele
    Innocenti

    Assistant Professor of Physics
    Primary DLC
    Department of Physics

    Contact

    MIT Room
    24-415
    Phone
    (617) 253-7597
    ginnocen@mit.edu
  • July 1, 2008

    Outsourcing: Design, Process, and Performance

  • SMR-Logo
    November 11, 2021

    Online Shoppers Don't Always Care About Faster Delivery

  • Members Only

    Health Science Technologies @MIT

    Thu, March 25, 2021 Webinar
    Leading Edge Roundtable – AI, PERTURBATION, INTEGRATION, DISCOVERY

    The pharmaceutical industry has experienced an extraordinary rise in the generation and use of enormous datasets. Nevertheless, there remain great challenges on this front regarding everything from target identification to understanding the performance of marketed products. In the context of this broad impact, we have assembled a group of leading researchers and executives from the MIT-connected community who will address questions of discovery, data integration, and system perturbation analysis, including use of artificial intelligence and machine learning techniques. What is the impact of current developments on high-throughput profiling, computational biology, and validation of gene targets? How do these developments impact the use of chemical libraries, drug-delivery systems, and patient-facing objectives? These are the types of questions that will be addressed in this exciting panel discussion.

  • April 1, 2009

    Why the Economy Needs Technological Innovation

  • After Moore's Law (Repeat)

    Wed, October 21, 2020 Webinar
    Webinar: MRL-ILP Webinar Series

    Transistor footprint scaling is rapidly approaching its limits. But this is not about to slow the rapid progress of information processing technology. On the contrary, 3D integration involving new material systems and devices opens a new era with unprecedented promise.

  • 2024 MIT Sustainability Conference: MIT Climate & Sustainability Consortium Project Highlights

    October 22, 2024Conference Video Duration: 34:22

    MIT Climate & Sustainability Consortium Project Highlights
    Introduction and Update
    Jeremy Gregory
    Executive Director, MIT Climate & Sustainability Consortium

    The Climate and Sustainability Implications of Generative AI
    Noman Bashir
    Computing & Climate Impact Fellow, MIT Climate & Sustainability Consortium

    The rapid expansion of generative artificial intelligence (Gen-AI) neglects consideration of negative effects alongside expected benefits. This incomplete cost calculation promotes unchecked growth and a risk of unjustified techno-optimism with potential environmental consequences, including expanding demand for computing power, larger carbon footprints, and an accelerated depletion of natural resources. The current siloed focus on efficiency improvements results instead in increased adoption without fundamentally considering the vast sustainability implications of Gen-AI. 

    In this talk, I will propose that responsible development of Gen-AI requires a focus on sustainability beyond only efficiency improvements and necessitates benefit-cost evaluation frameworks that encourage (or require) Gen-AI to develop in ways that support social and environmental sustainability goals alongside economic opportunity. However, a comprehensive value consideration is complex and requires detailed analysis, coordination, innovation, and adoption across diverse stakeholders. Engaging stakeholders, including technical and sociotechnical experts, corporate entities, policymakers, and civil society, in a benefit-cost analysis would foster development in the most urgent and impactful directions while reducing unsustainable practices. More details are in our white paper, which is accessible at MIT Gen-AI Sustainability White Paper.

    A Cautionary Tale about Deep Learning-based Climate Emulators
    Björn Lütjens
    Postdoctoral Associate, MIT Department of Earth, Atmospheric, and Planetary Sciences

    Climate models are computationally very expensive for exploring the impacts of climate policies. For example, simulating the impacts of a single policy emission scenario can take multiple weeks and cost hundreds of thousands of USD in computing. Compellingly, deep learning models can now forecast the weather in seconds rather than hours in comparison to conventional weather models and are being proposed to achieve similar reductions by approximating climate models. Climate approximations or emulators, however, have already been developed since the 1990s and I will present how we implemented a linear regression-based emulator that outperforms a novel 100M-parameter transformer-based deep learning emulator on the most common climate emulation benchmark. I will use our results to discuss more nuanced insights highlighting how chaotic dynamics influence emulator performance and use cases where deep-learning emulators can improve existing linear emulators. 

    Collaborative Development of an Interactive Decision Support Tool for Trucking Fleet Decarbonization
    Danika MacDonell
    Impact Fellow, MIT Climate & Sustainability Consortium

    This presentation shares the journey of creating an interactive geospatial decision support tool in close collaboration with industry and academic partners of the MIT Climate & Sustainability Consortium. The tool leverages comprehensive public data on freight flows, costs, emissions, infrastructure, and regulatory incentives. Integrating key insights and methodologies from our partners, it aims to assist trucking industry stakeholders in identifying and assessing strategies to transition fleets to low-carbon energy carriers.

Pagination

  • of 221
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • Next page

Sign up to receive news and updates from MIT Industrial Liaison Program Sign up

  • Read
    • Faculty Features
    • Research
    • News
  • Watch
  • Attend
    • Conferences
    • Webinars
    • Learning Opportunities
  • About
    • Membership
    • Staff
    • For Faculty
  • Connect
    • Faculty/Researchers
    • Program Directors
  • MIT Startup Exchange
  • LinkedIn
  • YouTube
  • Twitter
Home

1 Main Street
12th Floor, E90-1201

Cambridge, MA 02142

Privacy Policy

Accessibility

617-253-2691
ask-ilp@mit.edu

MIT OCR Logo