Recent innovations in semiconductor technology and biochemistry have brought about opportunities for realizing the long sought-after dream of personalized care. Periodic clinical-quality readings of biomarkers and vital signs provide the data needed to build a digital twin of one’s biological profile based on an AI-generated model. The digital twin will be a powerful tool for prevention, diagnosis, prognosis as well as therapeutic plans. The “Waves, Bits, and Molecules”” lab at MIT envisions transformational improvements in healthcare and life quality through innovations in advanced technologies at the intersection of semiconductor technology, biochemistry, and machine learning. In this talk, we review innovative semiconductor technologies such as electrochemical, Ultrasonic, photoacoustic, RF, and magnetic sensors and nanoactuators, which can transform the future of personalized diagnostics and treatments.
The remarkable progression of innovations that imbue machines with human and superhuman capabilities is generating significant uncertainty and deep anxiety about the future of work. Whether and how our current period of technological disruption differs from prior industrial epochs is a source of vigorous debate. But there is no question that we face an urgent sense of collective concern about how to harness these technological innovations for social benefit. To meet this challenge, the Institute launched the MIT Task Force on the Work of the Future in spring 2018.
Contact
Assistant
Zen Chu