Entry Date:
July 1, 2020

Noninvasive Assessment of Pulmonary Edema Using Machine Learning

Principal Investigator Polina Golland

Project Start Date July 2020


Heart failure is the number one cause of hospitalization in the United States, with high readmission and mortality rates. Effective treatment for acute heart failure depends on the accurate measurement of fluid overload in the lungs, known as pulmonary edema, but this is challenging and costly. This team uses machine learning algorithms to automatically assess the severity of pulmonary edema from chest X-ray images. Combined with other clinical measurements, the project’s unique fluid status visualization will provide accurate, noninvasive, longitudinal tracking of pulmonary edema, and of patients’ response to treatment. This visualization will enable physicians to deliver better targeted therapies.