Entry Date:
August 1, 2020

High-Fidelity Monitoring for Carbon Sequestration: Integrated Geophysical and Geochemical Investigation of Field and Laboratory Data

Principal Investigator Matej Pec

Associated Departments, Labs & Centers

Project Start Date August 2020


The research plan is to conduct a comprehensive study to gain a holistic understanding of the coupled chemo-mechanical processes that accompany CO2 storage in basaltic reservoirs, with hopes of increasing adoption of this technology.

The Intergovernmental Panel on Climate Change estimates that 100 to 1,000 gigatonnes of CO2 must be removed from the atmosphere by the end of the century. Such large volumes can only be stored below the Earth’s surface, and that storage must be accomplished safely and securely, without allowing any leakage back into the atmosphere.

One promising storage strategy is CO2 mineralization -- specifically by dissolving gaseous CO2 in water, which then reacts with reservoir rocks to form carbonate minerals. Of the technologies proposed for carbon sequestration, this approach is unique in that the sequestration is permanent: the CO2 becomes part of an inert solid, so it cannot escape back into the environment. Basaltic rocks, the most common volcanic rock on Earth, present good sites for CO2 injection due to their widespread occurrence and high concentrations of divalent cations such as calcium and magnesium that can form carbonate minerals. In one study, more than 95 percent of the CO2 injected into a pilot site in Iceland was precipitated as carbonate minerals in less than two years.

However, ensuring the subsurface integrity of geological formations during fluid injection and accurately evaluating the reaction rates in such reservoirs require targeted studies.