Entry Date:
May 2, 2017

Interdisciplinary Research Applies Diverse Skill Sets to Energy Challenges

Principal Investigator Fikile Brushett


Fikile Brushett, an assistant professor of chemical engineering, and Audun Botterud, a principal research scientist in the Laboratory for Information and Decision Systems, are one of several teams leveraging interdisciplinary collaboration. By combining their expertise in battery technology and in power grid operations, Brushett and Botterud are developing new laboratory-scale methods of testing the performance and economic viability of grid-scale batteries under realistic operating conditions. “Implementation of application-informed methodologies can enable better evaluation of today’s technologies and can guide the development of next-generation battery systems for power grids with increasing shares of renewable energy,” says Botterud.

Another interdisciplinary project from this year’s round of grants focuses on developing novel computational tools that aid the design of new molecules. Based on first-principles modeling and data-driven models that leverage available literature, researchers Heather Kulik, an assistant professor of chemical engineering, and Youssef Marzouk, an associate professor of aeronautics and astronautics, are creating a novel approach that predicts the behavior of new molecules and updates predictions on the fly using recent advances in machine learning and uncertainty quantification. The goal is to use computer simulation rather than laboratory testing to guide the design of molecules optimized for selected uses. Their first tools focus on optimizing lubricant molecules critical to increasing vehicle fuel economy.