Entry Date:
July 1, 2015

Institute for Data, Systems and Society (IDSS): Application Domains


IDSS will take cross-disciplinary approaches to solving problems across a wide range of application domains -- including finance, urbanization, energy systems, social networks, and health analytics.

IDSS addresses complex systems in domains such as urbanization—which includes systems such as transportation, roads and bridges, water and energy systems, and telecommunications networks.

FINANCE: asset management firms, telecom and IT firms, and government regulatory agencies, are all: 1) far more interconnected; 2) managing transactions at sub-millisecond time scales; and 3) generating, storing, and managing masses of data from these transactions. IDSS research aims to address problems caused by the confluence of these issues. For example, understanding and managing systemic risk across financial systems requires a more complete understanding of how shocks and disruptions can propagate through the system and how the structure and nature of the interconnections can make such systems susceptible to cascading failures. Research at IDSS will aim to establish and build trust in financial systems, creating better, more stable, and productive financial systems around the globe.

URBANIZATION: We are experiencing an enormous surge in the growth and expansion of urban regions around the world. The United Nations forecasts that by 2030, over five billion people, or well over half of the world population, will live in cities or towns. Increased urbanization worldwide presents a variety of challenges related to the systems integral to any city, such as public transportation, roads and bridges, water and energy systems, and telecommunications networks. Future cities will be highly instrumented with sensors and devices providing an almost real-time update of its various states, including congestion, level of pollution, or availability of resources. In order to manage the complexity of such urban environments, it is inevitable that real-time control and decision be implemented based on the state of the city. Such decisions not only regulate the infrastructure of the city (e.g., dynamic traffic lights and tolls, CO2 mitigation), but also incentivize behavioral patterns deemed desirable for the well-being of people who live in these places. Such an intertwined interaction between physical and technological systems, human behavior, and regulations, makes the urbanization challenge an ideal problem for IDSS.

SOCIAL NETWORKS: With the arrival of new technology platforms for online interaction and real-time communication enabled by the Internet, as well as the proliferation of more advanced sensors and tracking devices, we now produce vast amounts of data every day, detailing our lives, preferences, friendships, and health. These technologies have not only dramatically changed our lives, but also promise to transform how we study social behavior and dynamics. Yet a complete answer to the question of how individuals make decisions in groups remains elusive. Such studies necessitate the merging and further advancement of both social science and data processing and analysis, by studying interactions, exchanges, and dynamics over large networks of interconnected individuals. IDSS is ideally placed to play a leading role in this endeavor by blending expertise that spans mathematical systems theory, economics, political science, algorithmic and computational game theory, and network science. IDSS research will address such topics as: 1) Developing empirically grounded theoretical frameworks for analysis of information flow, communication, influence, learning, and cascades in social networks, 2) Designing efficient, local, and scalable algorithms for inference with social data, 3) Designing incentive mechanisms for steering behavior towards desired outcomes over large evolving networks, and 4) Developing new architectures for the exchange of information, social interaction, and crowdsourcing.

HEALTH ANALYTICS: There are many opportunities for applying new analytical methods to the area of health, such as improving the management of healthcare systems, predictive analytics for hospitals and clinical decision making, and using continuous patient monitoring to improve decision making–whether in developing new therapeutic treatments or managing chronic diseases. Advances in technologies provide new opportunities to monitor and collect vast amounts of data, including electronic medical records, new wearable sensors and devices, text-based data from medical notes and online systems, insurance and payment data records, and biological and genomic data. The challenges of making sense of all of this disparate data are considerable, and implementing solutions in this domain can be particularly challenging due to the complex number of stakeholders in healthcare systems, existing regulatory and policy constraints, and the potential need to implement solutions that produce or require behavior changes. IDSS research will bring together experts from across disciplines to tackle these important issues.

ENERGY SYSTEMS: A growing global population presents challenges in meeting the increasing demand for energy and the development of the underlying infrastructure that provides critical services and utilities, such as power and communications, as well as natural resources, like water. IDSS will focus on research that advances our understanding of these systems, and how new sensors and analytics will provide smart services, as well as better management and reliability in the future. For example, the development of power grids around the globe is being driven by environmental and economic factors, and is evolving rapidly to incorporate diverse technologies in renewable and distributed power generation. The successful integration of these resources, which are inherently uncertain, volatile, and governed by fundamentally different economics, requires rethinking of the architecture of electricity markets. In parallel, the abundance of modern sensing, communication, and actuation technologies presents an unprecedented opportunity for organizing these new components under a robust, efficient, and secure architecture for communication, computation, and control. Modern power grids must operate efficiently under normal operating conditions and be capable of withstanding severe disturbances in a highly dynamic and uncertain environment. IDSS research will address these problems through the development of systematic modeling and analysis methodologies, as well as architecture design frameworks for future systems.