Entry Date:
September 30, 2014

(BRAIN) Initiative: How Synapses Process Information

Principal Investigator Elly Nedivi

Co-investigator Peter So


A second team of MIT BRAIN Initiative awardees will explore how the integration of excitatory and inhibitory inputs (synapses) within a single neuron supports information processing in normally functioning brains — and how it is altered in dysfunctional networks impacted by disease.

This team includes Elly Nedivi, principal investigator at the Picower Institute for Learning and Memory and professor in the MIT departments of Biology and Brain and Cognitive Sciences, and colleague Peter So, MIT mechanical and biological engineering professor.

To accomplish their objectives, neurons in a living brain are genetically engineered so that relevant structures are labeled with different color fluorescent proteins allowing high-resolution 3-D mapping of all inputs onto a single neuron. This synaptic map is then used to guide a novel random-access imaging system that can monitor activity at all synaptic sites with millisecond temporal resolution.

The valuable data generated by this research will shed new light on the synaptic transmission and neuronal network interconnectivity that underlie information processing and brain plasticity. The next-generation random access imaging technology proposed by Nedivi and So is expected to enable significantly optimized monitoring of larger, more complex communication networks in animal and human brains.

The Nedivi and So labs have been collaborating for more than a decade to develop methods for monitoring synapses across neurons in the mouse visual cortex. Currently, they are joining forces again to develop next-generation multi-photon microscopy for high-resolution functional brain imaging of synaptic structural dynamics — at the core of the NIH-supported BRAIN Initiative research they will be taking on.