Entry Date:
December 3, 2013

Weng Laboratory

Principal Investigator Jing-Ke Weng


Early plants began colonizing the terrestrial earth approximately 450 million years ago. Their success on land has been attributed to the evolution of elaborate specialized metabolic systems from core metabolic pathways, the former yielding a panoply of functionally diverse chemicals to cope with a myriad of biotic and abiotic ecological pressures.

The lab has broad interests in understanding the origin and evolution of plant specialized metabolism at enzyme, pathway, and systems levels, as well as how plants exploit discrete small molecules to interact with their surrounding biotic and abiotic environments. Our work in plant metabolic evolution impacts a fundamental question in biology - how do complex traits evolve in a Darwinian fashion? In addition, we actively seek opportunities to utilize plant as a unique model system to study human diseases, including metabolic syndromes and protein-misfolding diseases. In the long run, we also aim at elucidating the molecular mechanisms underlying the "matrix effect" known from many traditional herbal remedies used for thousands of years. We believe that basic scientific research motivated by curiosity will be key to address the societal challenges of tomorrow.

Plants produce a repository of functionally diverse chemicals as a means to adapt to challenging environments. These so-called specialized metabolites protect plants against various abiotic stresses in terrestrial ecosystems, and mediate an array of interspecies interactions, ranging from seduction of pollinators and seed dispersers to defense against pathogens and herbivores. In addition, several classes of plant specialized metabolites also serve as hormones, perceived by complementary signaling networks in host plants to trigger physiological changes in response to environmental cues. Furthermore, many plant-derived specialized metabolites, e.g. paclitaxel, artemisinin, and resveratrol, also possess unique pharmacological properties that directly impact human health. The remarkable chemodiversity in plants is backdropped by rapidly evolving specialized metabolic systems, offering a fascinating platform to understand how complex traits arose in life.

We are interested in addressing five fundamental questions regarding the origin and evolution of chemodiversity in plants: (I) What are the evolutionary trajectories through which multistep specialized metabolic pathways and specific hormone-receptor pairs were assembled? (II) What is the structural and mechanistic basis for the divergence or convergence of catalytic functions in evolving specialized enzymes? (III) What roles do neutral mutation, catalytic promiscuity, protein dynamics, and stability play in natural evolution of new enzyme functions? (IV) Are there distinct biophysical constraints imposed on the same protein fold shaping the differential evolvability in primary and specialized metabolic enzymes? (V) Can we uncover missing genetic and epigenetic components facilitating the rapid evolution of specialized metabolic systems in plants?