Entry Date:
May 21, 2013

Turbine Tip Clearance Loss Mechanisms


One of the large loss sources in a turbine stage arises from the flow through the gap between the rotor tip and the shroud. The pressure difference across the tip drives the flow through the gap, and this leakage flow subsequently rolls up into a vortex on the suction side of the blade and convects downstream. As the vortex mixes out and decays, entropy is generated. Previous work by Arthur Huang has identified the pressure gradient external to the vortex as a major mechanism for determining the loss generated by the tip vortex. The current project aims to consider new influencing factors on the vortex evolution and associated loss. 3D computational simulations are being used to study the influence of several classes of effects. Downstream influence of the transition duct at the exit of the high pressure turbine can have an impact on the external conditions the tip leakage vortex is subjected to. A parametric study is underway to illustrate how the governing design parameters influence the tip clearance loss. Future project goals are to discover how upstream and unsteady effects change the loss created by turbine tip gap flows.