Entry Date:
September 29, 2011

Quantum Computing with Light


A switch that lets one photon alter the quantum state of another could point the way to both practical quantum computers and a quantum Internet.

Quantum computers are largely theoretical devices that would exploit the weird properties of matter at extremely small scales to perform calculations, in some cases much more rapidly than conventional computers can. To date, the most promising approach to building quantum computers has been to use ions trapped in electric fields. Using photons -- particles of light -- instead would have many advantages, but it’s notoriously difficult to get photons to interact: Two photons that collide in a vacuum simply pass through each other.

A quantum particle has the odd property that it can be in “superposition,” meaning it’s in two different states at the same time: Fire a single photon at a barrier with two slits in it, for instance, and it will, in some sense, pass through both of them. Where the bits in an ordinary computer can represent either zero or one, a bit made from a quantum particle -- a qubit -- could thus represent both zero and one at the same time.

For this reason, a string of only 16 qubits could represent 64,000 different numbers simultaneously. It’s because a quantum computer could, in principle, evaluate possible solutions to the same problem in parallel that quantum computing promises major increases in computational speed.

But one of the difficulties in building quantum computers is that superpositions of states can be very fragile: Any interaction with its environment can cause a subatomic particle to snap into just one of its possible states. Photons are much more resistant to outside influences than subatomic particles, but that also makes them harder to control; over the course of a computation, a quantum computer needs to repeatedly alter the states of qubits.

The MIT and Harvard researchers’ new paper points toward a quantum computer that offers the best of both worlds: stability and control. Moreover, photons in superposition could carry information stored as qubits rather than as ordinary bits, opening the possibility of a quantum Internet.

When a photon enters the cavity, it begins bouncing back and forth between the mirrors, delaying its emission on the other side. If another photon has already struck the cesium atoms, then each pass through them delays this second photon even more. The delay induced by a single pass through the atoms would be imperceptible, but the mirror-lined cavity.

When it emerges from the cavity, the second photon thus has two possible states -- delayed or extra-delayed -- depending on whether another photon has preceded it. With these two states, it could, in principle, represent a bit of information. And if the first photon was in some weird quantum state, where it can’t be said to have struck the atoms or not, the second photon will be both extra-delayed and not extra-delayed at the same time. The cavity would thus serve as a quantum switch, the fundamental building block of a quantum computer.

Counting photons -- Currently, the extra delay is not quite long enough that delayed and extra-delayed photons can be entirely distinguished, but if the researchers can increase its duration, the switch could have other uses as well. Many potential applications of quantum optics, such as quantum cryptography, quantum communication and quantum-enhanced imaging, require photons that are emitted in definite numbers -- usually one or two. But the most practical method of emitting small numbers of photons -- a very weak laser -- can promise only an average of one photon at a time: There might sometimes be two, or three, or none. The CUA researchers’ switch could be tailored to separate photons into groups of one, two or three and route them onto different paths.

Because the switch allows the state of one photon to determine that of another, it could also serve as an amplifier in a quantum Internet, increasing the strength of an optical signal without knocking the individual photons out of superposition. By the same token, it could serve as a probe that detects photons without knocking them out of superposition, improving the efficiency of quantum computation.