Principal Investigator Manolis Kellis (Kamvysselis)
As digital media become more popular, corporations and individuals gather an increasingly large number of digital images. As a collection grows to more than a few hundred images, the need for search becomes crucial. This thesis is addressing the problem of retrieving from a small database a particular image previously seen by the user. This thesis combines current ndings in cognitive science with the knowledge of previous image retrieval systems to present a novel approach to content based image retrieval and indexing. We focus on algorithms which abstract away information from images in the same terms that a viewer abstracts information from an image. The focus in Imagina is on the matching of regions, instead of the matching of global measures. Multiple representations, focusing on shape and color, are used for every region. The matches of individual regions are combined using a saliency metric that accounts for differences in the distributions of metrics. Region matching along with configuration determines the overall match between a query and an image.