Entry Date:
May 21, 2013

Centrifugal Compressor Science and Technology: Multi-Parameter Control for Compressor Performance Optimization


Centrifugal compressor systems deployed in the industry are required to operate 24/7 with minimum down time. As such their operation at high thermodynamic efficiency across a wide operating range is of paramount importance to the customers.

Extending the compressor limits to meet the needs of a specific engineering mission is one of the most important aspects of compressor engineering. Strategies to quantitatively assess the potential for extending compressor performance and operating range must be developed. This can be done by determining the drivers that set the requirements for the broadest operable range with high efficiency retention.

The goal of this research is to first identify what are the parameters of high leverage that affect centrifugal compressor performance followed by establishing potential means of achieving near matching of centrifugal compressor components at all desirable operating points required for its mission. Some of the key parameters that are thought to have a high leverage on compressor performance characteristics are compressor speed, guide vane setting and diffuser vane angle setting; however there could be others that are to be identified during the course of the research. In light of this, formulating an effective control strategy (passive, active or a combination of both) for achieving desirable compressor performance requirements for its specified mission (as alluded to above) at an optimal cost would also be another goal for this research.

The general approach consists of leveraging on the technical capability and thinking at the MIT Gas Turbine Laboratory and of working collaboratively with Siemens Technologists. It will also be necessary to define physical experiments at Siemens Facility in Germany or at MIT Gas Turbine Laboratory for assessing ideas and concepts formulated during the course of the research.