Entry Date:
September 10, 2009

The Environment as a Variable to Calibrate Mouse Models of Human Disease

Principal Investigator John Essigmann

Project Start Date January 2008

Project End Date
 December 2017


Most carcinogens form covalent products, or adducts, with DNA. Adducts are believed to drive the genetic changes that convert normal cells into cancer cells, which then outgrow into a tumor. Factors that influence the formation or removal of adducts, therefore, are likely to be important determinants of human susceptibility to carcinogenesis. Moreover, agents that damage DNA can modify targets not directly relevant to cancer; directly or indirectly, DNA damaging agents may play important roles in initiating or promoting a host of other diseases. The work described below is an effort to understand how DNA adduction integrates with other biochemical factors, determinable by modern analytical tools, to define the differences in sensitivity to environmental agents that are associated with age and gender. The main focus of the work deals with aflatoxin B1 (AFB1), an important human liver carcinogen that is associated with most cases of hepatocellular carcinoma, especially when toxin works in concert with hepatitis viruses. Our work will address four gaps in knowledge. First, we shall provide a high resolution map of the biological networks of both genders of the B6C3F1 mouse at specific time points from fetus through infancy and adulthood and determine how those networks respond to AFB1.

Second, the gene network data we produce will be anchored to sensitive detection of DNA adducts, using a tool that will even detect adducts in the fetus of an exposed mother. Accelerator Mass Spectrometry (AMS) will be used to examine the formation and fate of DNA adducts at sensitive and resistant stages of life. Third, we shall administer to mice a chemo-interventive agent, sulphoraphane, that we expect will alter metabolic networks in a manner that will protect pre- born, infant and adult animals from this environmental insult. Finally, our experiments with AFB1 will be coupled with a more limited investigation of the genotoxic effects of four compounds from the NTP data set. These additional agents include4-aminobiphenyl (ABP), 2-amino-1-methyl-6- phenylimidazo pyridine (PhIP), acrylamide and 17-estradiol (E2). An important goal of this research is the development of a host of new biomarkers that can be applied to the mouse model, and later other models that are used to predict the impact of environmental agents on humans.