Entry Date:
January 9, 2007

Stem Cell Bioengineering


Stem cells have the unique ability of self-renewal as well as being able to give rise to differentiated cell types. Because stem cells can differentiate into diverse cell types, they have the potential to provide treatment for a wide variety of human diseases by providing functional tissues for therapy. The ability to control differentiation of stem cells can generate a renewable source of cells for regenerative medicine and be utilized in a wide array of applications including use as models of human disease. Stem cell differentiation is affected by a myriad of microenvironmental factors such as soluble growth factors, matrix components, and cell-cell contact molecules. One of the major challenges to using stem cell derived tissues is the ability to homogenously direct stem cell differentiation in a scalable manner. In our lab, a variety of BioMEMS techniques and materials are applied in order to control the cellular microenvironment. By regulating factors such as cell-cell interactions we are working to develop methods of creating controlled microenvironmental systems in which homogeneous differentiation of stem cells can occur.