Principal Investigator Nicholas Patrikalakis
Project Website http://deslab.mit.edu/DesignLab/Watermarking/front.html
The objective of this project is to develop an intrinsic watermark technique for solids bounded by NURBS surfaces. The key idea is to extract intrinsic properties of solids, which are not affected by coordinate transformations, random noise and malicious action of the user. This watermark can be destroyed only if the digital model describing the shape is changed so much that the newly represented object cannot any longer be considered approximately identical to the original solid in the database.
Recently copyright issues for digital contents are becoming a serious problem. Especially when the copyrighted digital contents are exposed to the internet, they are an easy target for malicious parties to produce pirate digital contents for unauthorized sales. Digital watermarking, defined as a process to embed data called watermark into a digital content to protect the copyright of the owners, is becoming an active research topic. There exist studies on digital watermarking techniques for 3D polygonal models, prompted by the increasing popularity of virtual reality modeling language (VRML) and standardization of MPEG-4. Unfortunately, these techniques cannot be applied directly to computer aided design (CAD) based objects, which are usually represented by Non-Uniform Rational B-Spline (NURBS) surfaces. Moreover existing watermarking techniques, such as embedding data by slightly changing the control points, putting some pattern in the mesh, are vulnerable to coordinate transformation, random noise and malicious action of the user. The objective of this project is to develop an intrinsic watermark technique for solids bounded by NURBS surfaces. The key idea is to extract intrinsic properties of solids, which are not affected by coordinate transformations, random noise and malicious action of the user. This watermark can be destroyed only if the digital model describing the shape is changed so much that the newly represented object cannot any longer be considered approximately identical to the original solid in the database.