Entry Date:
August 24, 1998

Wright Brothers Wind Tunnel (WBWT)

Principal Investigator Mark Drela

Co-investigator Ping M Lee


Since 1938, MIT's Wright Brothers Wind Tunnel has played a major role in the development of aerospace, civil engineering and architectural systems. In recent years, faculty research interests generated long-range studies of unsteady airfoil flow fields, jet engine inlet-vortex behavior, aeroelastic tests of unducted propeller fans, and panel methods for tunnel wall interaction effects. Industrial testing has included helicopter antenna pods, and in-flight trailing cables, stationary and vehicle mounted ground antenna configurations, the aeroelastic dynamics of airport control tower configurations, Olympic ski gear, space suits, racing bicycles, subway station entrances, and Olympic rowing shells, and power-generating wind turbines.

For more than a century, MIT wind tunnels have proven instrumental tools in the examination of aerospace, architectural, vehicular, sports and other engineering systems.

MIT's Wright Brothers Wind Tunnel's primary use is for student projects, research and instruction, however it is also available for commercial research and development. The tunnel can be operated between 0.25 atmospheres and 2.0 atmospheres, making it the only non-government pressurized wind tunnel in the United States. (Note that the test section is not isolated from the main tunnel, so during non-atmospheric operations the entire tunnel must be pumped or evacuated to make model changes, rendering this particular operation inefficient in terms of data points per hour.)

In addition to the usual force and moment balance system, this 7 X 10-foot elliptical cross-section wind tunnel has the necessary auxiliary equipment for inlet and diffuser testing, gust generation, and production of thick boundary layers to model the earth's boundary layer. It should be noted that the test section is not isolated from the main tunnel: during non-atmospheric operration the entire tunnel must be pumped or evacuated to make model changes, rendering the operation inefficient in terms of data points per hour.