Skip to main content
MIT Corporate Relations
MIT Corporate Relations
Search
×
Read
Watch
Attend
About
Connect
MIT Startup Exchange
Search
Sign-In
Register
Search
×
MIT ILP Home
Read
Faculty Features
Research
News
Watch
Attend
Conferences
Webinars
Learning Opportunities
About
Membership
Staff
For Faculty
Connect
Faculty/Researchers
Program Directors
MIT Startup Exchange
User Menu and Search
Search
Sign-In
Register
MIT ILP Home
Toggle menu
Search
Sign-in
Register
Read
Faculty Features
Research
News
Watch
Attend
Conferences
Webinars
Learning Opportunities
About
Membership
Staff
For Faculty
Connect
Faculty/Researchers
Program Directors
MIT Startup Exchange
Back to Faculty/Researchers
Prof. Phiala E Shanahan
Associate Professor of Physics
Primary DLC
Department of Physics
MIT Room:
6-416
(617) 253-6267
pshana@mit.edu
https://physics.mit.edu/faculty/phiala-shanahan/
Research Summary
Professor Shanahan’s research interests are focussed around theoretical nuclear and particle physics. In particular, she works to understand the structure and interactions of hadrons and nuclei from the fundamental (quark and gluon) degrees of freedom encoded in the Standard Model of particle physics. Shanahan’s recent work has focused in particular on the role of gluons, the force carriers of the strong interactions described by Quantum Chromodynamics (QCD), in hadron and nuclear structure; using analytic tools and high performance supercomputing, she recently achieved the first calculation of the gluon structure of light nuclei, making predictions which will be testable in new experiments proposed at Jefferson National Accelerator Facility and at the planned Electron-Ion Collider. She has also undertaken extensive studies of the role of strange quarks in the proton and light nuclei which sharpen theory predictions for dark matter cross-sections in direct detection experiments. To overcome computational limitations in QCD calculations for hadrons and in particular for nuclei, Professor Shanahan is pursuing a program to integrate modern machine learning techniques in computational nuclear physics studies.
Recent Work
Related Faculty
Prof. Mark Vogelsberger
Professor of Physics
Prof. Lawrence Rosenson
Professor of Physics, Emeritus
Dr. Alan M Levine
Research Affiliate