Making Invisible Visible Inside, Around and Beyond

Ramesh Raskar Associate Professor MIT Media Lab

MIT Camera Culture Grp Summer course: tiny.cc/mitcourse

People:

Head: Professor Ramesh Raskar Administrative Staff: Margaret Church

Head of Innovation and New Ventures: John Werner

Research Staff Pratik Shah, Albert Redo Sanchez, Karin Roesch, Tristan Swedish, Rohan Puri

Post-Doctoral Researchers

Micha Feigin, Dan Raviv, Barmak Heshmat, Munehiko Sato, Anshuman Das, Ik Hyun Lee, Hyunsung Park

Research Assistants

Nikhil Naik, Ayush Bhandari, Achuta Kadambi, Guy Satat, Hang Zhao, Hisham Bedri, Shantanu Sinha, Otkrist Gupta

Visiting Researchers & Students

In Kyu Park, Eduardo Bayro-Corrochano, Mingjie Zhang, Yun Zhang, Jamie Schiel

Conquer.. Time

Milli Micro Nano Pico Femto Atto

Conquer .. Time Noise Signal

Milli Micro Nano Pico Femto-graphy Atto

Seeing Around Corners

Femto-Camera

nature

Hidden Mannequin

Door

Wall

Velten et al, Nature Communications 2012

Pandharkar, Velten, Bardagjy, Lawson, Bawendi, Raskar, CVPR 2011

DARPA REVEAL Program \$28M

Femto-Photography Endoscope

Optical Jumbled Brush Endoscope

Heshmat, Nature SciRep16

Cellular resolution at 5mm

NSF Moonshot Satat,

Satat, Nature Comm 15

FLIM Location behind Tissue

Satat, Nature SciRep 17

CT-scan in a Rickshaw

Kadambi 17

Cellular Resolution In-vivo Imaging

Conquer time ..

- Seeing around corners
- Fog/Closed book
- Endoscopes/ Optical Brush
- Fluorescence Lifetime

Beat Diffraction

Gated imaging to overcome ambient light 'Negative light' via destructive interference inside any volume Focus at or 'heat' any voxel ..

Single-Photon Camera: 3D Imaging

Time-of-Flight 3D Cameras

Commercial Devices

Kinect 3D Camera

AR/VR Headsets

Lidar

Smartphones

Applications

autonomous cars industrial automation

extreme robotics

Microsoft Kinect v4, Hololens 2 (www.microsoft.com)

Velodyne VLP-16 velodynelidar.com

TOF Sensors https://wccftech.com/apple-tof-sensor-2019-android-flagships-getting-support/ www.magicleap.com/, http://www.upi.com/

Single-Photon Cameras: Active Imaging

Asynchronous acquisition for other active imaging applications

images courtesy: http://www.noao.edu/, http://www.futurahma.it/, http://www.computationalimaging.org/, http://www.upi.com/, www.openmv.io

Single-Photon Cameras

MPD

Voxtel, Inc.

SwissSPAD2 EPFL

Gigajot

Ouster LiDAR

PhotonForce

Single-Photon Cameras: Attractive Features

Extreme Sensitivity Room Temperature Operation CMOS compatible Low cost, Compact

SPAD for Passive Imaging

Low Light

High Dynamic Range

Fast Motion

Single-Photon Camera: Limited to the Dark?

Dark

Photography in Ultra Low-Light

Mohit Gupta Assistant Professor UW Madison

0.03 photons-per-pixel per frame (2000 frames)

Complex Geometry

Complex Geometry

Naive Averaging

With Align & Merge

Quanta Burst Photography: Overview

Comparison with Conventional CMOS Sensor

Revolutionary Computer Vision with Single Photon Detectors

sebastian@ubicept.com

Sebastian Bauer, CEO

Invisible Objects

Sanchez, Heshmat, Reza, Romberg, Raskar 2015

Seeing thru Fog

Estimated visiblity: 70

Satat, Maeda, Tancik, Raskar, ICCP 2018

Fog + Object Model

Making Invisible Visible | Summer course tiny.cc/mitcourse

Making Invisible Visible Inside, Around and Beyond

Ramesh Raskar Associate Professor MIT Media Lab

Break the Scattering Barrier

Opportunity

- + Light travels deep inside the body
- + It is non-ionizing (400-1100nm)
- + Cheap to produce and control

Scattering Barrier

- Most pass-through photons are scattered
- Avg 10 scattering events per mm
- By 50mm, avg 500 scattering events !
- Large-scale inverse problem with low SNR

Success with Each Millimeter

	Depth	Applications
	-Epidermis <1mm -Dermis 1-5 mm	 Skin cancer diagnosis Burn wound assessment Melanoma diagnosis Skin graft assessment Pressure ulcer evaluation Microvascular blood flow assessment in diabetic foot ulcers Diagnosing anemia & ICU shock
K Holoski	-Subcutaneous 5-20 mm tissue	 Vascular health in diabetics Subcutaneous abscess/tumor screening

There are 99 ICD-10 codes for skin and subcutaneous tissue conditions. And many conditions like diabetes show symptoms in micro- and macro-vasculature below skin.