Deployable Antennas for Small Satellites

W. Moulder, RF Technology Group

18 November 2021

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

Subject to FAR52.227-11 Patent Rights - Ownership by the contractor (May 2014)

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

© 2021 Massachusetts Institute of Technology.
Rise of Micro/Nano-satellites

Micro/nano-satellites have had disruptive impact on space access

Nanosatellite launches by organisations

Graphic credit: Erik Kulu, Nanosats Database, www.nanosats.eu
SmallSat RF Applications

Highly complex RF systems now realizable on small platforms

- Imaging Radar
 - ICEYE (iceye.com)
- Scientific Sensing
 - MIT AERO VISTA
- Weather Monitoring
 - MIT LL TROPICS
- Spectral Monitoring
 - Hawkeye (he360.com)
- Communications
 - MarCO (nasa.jpl.gov)
Highly complex RF systems now realizable on small platforms

- Imaging Radar
 - ICEYE (iceye.com)
- Scientific Sensing
 - MIT AERO VISTA
- Weather Monitoring
 - MIT LL TROPICS
- Spectral Monitoring
 - Hawkeye (he360.com)
- Communications
 - MarCO (nasa.jpl.gov)

...but large antennas are still needed!
Deployable Antenna Challenges

- Compact stow/deploy
- Low mass
- Rigidity
- Low power consumption
- Thermal stability

Deployable antenna example

Deployable Reflectarray

SmallSat

1.8 m

0.6 m

NASA/MIT LL CREWSR (2021 IIP)
Types of Large Antennas for SmallSats

Antennas for low frequencies

Highly-directive fixed-beam antennas

Highly-directive scanning antennas
Types of Large Antennas for SmallSats

Antennas for low frequencies

Highly-directive fixed-beam antennas

Highly-directive scanning antennas
Deployable Vector Sensor Antenna

- MIT AERO, VISTA satellites will sense aurora radio emissions
- Deployable antennas sense 0.1 – 15MHz
- Multi-antenna configuration localizes radio emissions
Vector Sensor Prototype

- Antenna concept validated with balloon-mounted prototype
- Localization of signals in target band demonstrated
- AERO/VISTA cubesat launch targeted in 2022
Types of Large Antennas for SmallSats

- Antennas for low frequencies
- Highly-directive fixed-beam antennas
- Highly-directive scanning antennas
Inflatable Reflector Antenna

Enables large, ultra-light dish antennas deployed from small volume

- Primary Reflector 2.4 m
- Secondary Reflector 0.25 m
- Antenna Feed
- Toroid
- Primary Inflatable Chamber
- Secondary Inflatable Chamber
- RF transparent material
- Inflatable chamber
- Primary reflector
- Secondary reflector

1.1 m total height
2.7 m overall diameter

Prototype Reflector

• Design validated through measurement
• Measured RMS surface error ~2.7mm
• Deflated volume of outer torus ~1.25U
Wire Bending for Large Reflectors

Lead: Prof. Zachary Cordero, MIT

CNC wire bending can enable in-space manufacturing of large reflectors

CNC Wire Bender

Bend-Formed parabolic dish

1 m
Types of Large Antennas for SmallSats

- Antennas for low frequencies
- Highly-directive fixed-beam antennas
- Highly-directive scanning antennas
Lightweight Scanning Array Technology

- **LWAESA**: Lightweight Active Electronically-Scanning Array
- **DESRa**: Deployable Electronically-Scanning Reflectarray
- **RFAA**: Rigid-Flex Antenna Array
- **RF Fiber Array**

Typical Arrays
- 300 kg/m²
- 60 kg/m²
- 30 kg/m²

RADARSAT-2
- 6 kg/m²
- 2-4 kg/m²
- 1.5 kg/m²

0.05 kg/m² (Linear array)
Novel low-mass antenna array enables use on small platforms

Electronically steered beam

Unfolding array panels

Antenna elements

Lightweight castellated substrate

Electronics/signal distribution
Prototype with castellated substrate validated with measurements

Novel castellated substrate
Flexible, ultra-light array can be rolled and unrolled for deployment

Unrolling flexible antenna array

Rigid antenna substrate
Flexible circuit material
Array electronics

Electronically steered beam

RFAA
Rigid-Flex Antenna Array
RFAA Prototype

Concept validated experimentally after numerous roll cycles

Measured Antenna Pattern, 10 GHz

- No roll/unroll cycles
- After 50 roll/unroll cycles
DESRa scans beam by illuminating reconfigurable reflective surface.
Large Scanning Apertures

<table>
<thead>
<tr>
<th></th>
<th>Phased Array</th>
<th>DESRa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Thermal management</td>
<td>Complex</td>
<td>Simple</td>
</tr>
<tr>
<td>Scanning range</td>
<td>Wide</td>
<td>Wide</td>
</tr>
<tr>
<td>Cost</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>
2.2 m² prototype demonstrated highly directive scanned beam

Electronically scanned patterns, 9 GHz

0 deg. Scan

15 deg. Scan

30 deg. Scan

45 deg. Scan

Normalized Gain [dB]

Normalized Gain [dB]

Normalized Gain [dB]

Normalized Gain [dB]

Elevation Angle [deg]

Elevation Angle [deg]

Elevation Angle [deg]

Elevation Angle [deg]

Feed antenna
Simple deployment scheme provides 2.2m² aperture from 0.4m²

Deployment Scheme

Deployment EDU
Summary

• SmallSats enable new RF capabilities, pursued by more entities
• Deployable antennas critical for realization of large apertures
• MIT LL has demonstrated innovative deployable antennas for:
 – Low frequency systems
 – Highly-directive fixed-beam antennas
 – Highly-directive scanning antennas

HF Vector Sensor
Inflatable Reflector
Lightweight Scanning Arrays
BACKUP
Structural grids integrated within antenna for thin, symmetrical design

- Antenna w/ structural sheet
- Structural sheet
- Antenna stackup
- DESRa
- Aluminum structural grid
- Aluminum structural grid