Deployable Antennas for Small Satellites

W. Moulder, RF Technology Group

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

18 November 2021

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

© 2021 Massachusetts Institute of Technology.

Micro/nano-satellites¹ have had disruptive impact on space access

Highly complex RF systems now realizable on small platforms

Imaging Radar

Scientific Sensing

Weather Monitoring

Spectral Monitoring

Communications

Highly complex RF systems now realizable on small platforms

Imaging Radar

Scientific Sensing

MIT AERO VISTA

Weather Monitoring

Spectral Monitoring

Communications

...but large antennas are still needed!

Deployable Antenna Challenges

Deployable antenna example

- Compact stow/deploy
- Low mass
- Rigidity
- Low power consumption
- Thermal stability

Types of Large Antennas for SmallSats

Antennas for low frequencies

Highly-directive fixed-beam antennas

Highly-directive scanning antennas

Types of Large Antennas for SmallSats

Highly-directive fixed-beam antennas

Highly-directive scanning antennas

Deployable Vector Sensor Antenna

- MIT AERO, VISTA satellites will sense aurora radio emissions
- Deployable antennas sense 0.1 – 15MHz
- Multi-antenna configuration localizes radio emissions

F. C. Robey, et. al., "High Frequency (HF) Radio Astronomy from a Small Satellite"

- Antenna concept validated w/ balloon-mounted prototype
- Localization of signals in target band demonstrated
- AERO/VISTA cubesat launch targeted in 2022

Types of Large Antennas for SmallSats

Antennas for low frequencies

Highly-directive fixed-beam antennas

Highly-directive scanning antennas

Enables large, ultra-light dish antennas deployed from small volume

A. J. Fenn, et. al., "Axisymmetric Gregorian Reflector System for a Space-Deployed Inflatable Antenna: Simulations and Measurements," 2019 IEEE International Symposium on Phased Array System & Technology (PAST)

Prototype Reflector

- Design validated through measurement
- Measured RMS surface error ~2.7mm
- Deflated volume of outer torus ~1.25U

A. J. Fenn, et. al., "Axisymmetric Gregorian Reflector System for a Space-Deployed Inflatable Antenna: Simulations and Measurements," 2019 IEEE International Symposium on Phased Array System & Technology (PAST)

Wire Bending for Large Reflectors

Lead: Prof. Zachary Cordero, MIT

CNC wire bending can enable in-space manufacturing of large reflectors

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Deployable Antennas - 13 11/2021

Types of Large Antennas for SmallSats

Antennas for low frequencies

Highly-directive fixed-beam antennas

Highly-directive scanning antennas

Lightweight Scanning Array Technology

LWAESA

Lightweight Active Electronically-Scanning Array

Novel low-mass antenna array enables use on small platforms

Prototype with castellated substrate validated with measurements

RFAA Rigid-Flex Antenna Array

Flexible, ultra-light array can be rolled and unrolled for deployment

Concept validated experimentally after numerous roll cycles

DESRa scans beam by illuminating reconfigurable reflective surface

Large Scanning Apertures

Power divider	Array electronics	Antennas

	Phased Array	DESRa
Power consumption	High	Low
Thermal management	Complex	Simple
Scanning range	Wide	Wide
Cost	High	Low

2.2 m² prototype demonstrated highly directive scanned beam

Electronically scanned patterns, 9 GHz

Deployable Antennas - 22 11/2021

- SmallSats enable new RF capabilities, pursued by more entities
- Deployable antennas critical for realization of large apertures
- MIT LL has demonstrated innovative deployable antennas for:
 - Low frequency systems
 - Highly-directive fixed-beam antennas
 - Highly-directive scanning antennas

HF Vector Sensor

Inflatable Reflector

Lightweight Scanning Arrays

BACKUP

Structural grids integrated within antenna for thin, symmetrical design

