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Rapid iterations, 
fast time 
to market 

High mix, 
personalization, 

low-volume 
production

On-demand, 
distributed 

manufacturing
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THE DIGITALIZATION OF 
MANUFCTURING

is transforming how products are designed, 
made, and sold around the world
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3D printing 
can enable this 
paradigm shift

• DESIGN FREEDOM | Complex 
geometries previously impossible 

• PART CONSOLIDATION | Printing 
complete products rather than 
assembling components

• DISTRIBUTION | Highly distributed 
on-demand manufacturing 
networks 

Obstacles: reliability, materials, cost



VCJ
Vision-controlled Jetting

Print layers are dynamically 
adjusted based on scan data 
to match the CAD model

3D Vision 
System

UV 
Lamp

Inkjet
Printhead

Printed Part

Build Plate

Closed-loop Feedback Control

Contactless process enables the use of high-performance photopolymers.
First 3D printer to provide closed-loop feedback control of part geometry.



Typical 3D scan of a printed layer

High-resolution 3D scan data of every 
printed layer

~+/- 50 μm driven 
by scan system
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Unlocking 3D printing production at scale

High throughput High-performance 
materials

Fine feature 
resolution

Multi-material 
capability

Low labor



Dimensions (mm) 36 x 25 x 22

Parts per build 117

Time to print one 
batch 1.25 h

Number of parts 
produced by one 
machine per year

700,000

Material Elastomeric 
Thiolene

Production Run Example



 Shore 25A durometer
 200% elongation at break
 1.3 MPa tensile strength

Thin walls down to 400 µm 

Long and narrow internal conformal 
channels down to 500 µm in diameter 

Fine features in soft elastomers



Soft

Rigid

Soft

Rigid

The system can print different materials 
at the same time



Key capabilities

Dimensional accuracy

Functional material properties 

Production-scale capabilities



Random Variation

● AM is prone to random 
changes in materials and 
process

● AM lacks closed-loop control 
limiting accuracy

● Controllers are hand
designed and use no (or
limited) sensing
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Learning to Control for Manufacturing



Learning to Control for Manufacturing

● Reinforcement learning (RL) 
emerges as a promising methods 
to optimize control in robotics

● RL requires real-time 
observations/sensing of the 
environment

● RL requires lots of training data 
(e.g., 100K experiments) 

● High-performance RL controllers 
can beat human-designed 
controllers



Backlit Build Platform
Left Camera

Right Camera

Reconstructed 
Top-down ViewMachine Vision Sensing for AM  



3D Printing Process

Current State

Desired Target Nozzle Path

Updated 
Path & Velocity

Control Policy

3D 
Printer

AM System with Control Policy



● 3D printer simulation
● Particle based simulation 
● Simulates in real-time
● Easily parallelizable making 

training possible in short 
period of time. 

3D Printing Simulation

Simulation of the Material Deposition Process



Training Environment3D Printing Geometry 
Training Set

Material Properties

Randomized Process 
Variation

Time
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3D Printing 
Simulator

Reward Function

Training Robust Control Policy



3D Printing Process

Current State

Desired Target Nozzle Path

Updated 
Path & Velocity

Control Policy

3D 
Printer

Control Policy Transferred to Real System
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Viscosity Agnostic Control Policy



3D printing

Automated Process Optimization

• Can we automatically optimize a 
manufacturing process?

• What if numerical simulation does 
not exist?

• How to solve this problem if one 
can run only limited number of 
experiments (e.g., 100)?



3D printing

Case Study: Optimization of Material 
Formulations  for AM
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Formulations  for AM
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3D printing

Case Study: Optimization of Material 
Formulations  for AM



3D printing

Case Study: Optimization of Material 
Formulations  for AM



Surrogate model

Fit GPs for each objective f j

Observations Mean Uncertainty

f j(
x)

Multi-Objective Bayesian Optimization



Acquisition function

Approximate functions f j
from mean of GPs

f j(
x)

Surrogate model

Fit GPs for each objective f j

Observations Mean Uncertainty

f j(
x)

Multi-Objective Bayesian Optimization



Multi-objective solver

Approximate Pareto set 
and front over all f j

Pareto frontObservations

f1

f 2

Acquisition function

Approximate functions f j
from mean of GPs

f j(
x)

Surrogate model

Fit GPs for each objective f j

Observations Mean Uncertainty

f j(
x)

Multi-Objective Bayesian Optimization



Multi-objective solver

Approximate Pareto set 
and front over all f j

Pareto frontObservations

f1

f 2

Selection

Propose a batch of points 
to evaluate next

Selected points

f1

f 2

Acquisition function

Approximate functions f j
from mean of GPs

f j(
x)

Surrogate model

Fit GPs for each objective f j

Observations Mean Uncertainty

f j(
x)

Multi-Objective Bayesian Optimization



Evaluate proposed points

Multi-objective solver

Approximate Pareto set 
and front over all f j

Pareto frontObservations

f1

f 2

Selection

Propose a batch of points 
to evaluate next

Selected points

f1

f 2

Acquisition function

Approximate functions f j
from mean of GPs

f j(
x)

Surrogate model

Fit GPs for each objective f j

Observations Mean Uncertainty

f j(
x)

Multi-Objective Bayesian Optimization



Results



• Open-source

• Easy-to-use GUI 

• Built-in visualizations

• Human-in-the-loop  
optimization

https://www.autooed.org/

Optimal Experiment Design Platform

https://www.autooed.org/


Example Usage Scenarios

https://www.autooed.org/

https://www.autooed.org/


The Age of Intelligent Manufacturing

• Future manufacturing equipment 
will incorporate sensing (e.g., eyes)

• Sensing and simulation will be 
employed to learn controllers (e.g., 
brains) to optimize system 
performance

• New blueprint methods are being
developed to adapt this workflow 
for any manufacturing system 



Questions

• Contact: Wojciech Matusik, 
wojciech@mit.edu

mailto:wojciech@mit.edu
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