Chernobyl: How It Happened

The Physics

and the Human Factors
T ‘ p 4




Light Water vs. RBMK Reactor
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Cross Sections (Barns) Give Nuclear Reaction Rates
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Water and Graphite Slow Down Neutrons...
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... and Water Helps Absorb Neutrons, Slowing Fission

Fission happens here - Neutrons born here
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What Happens When The Water Is Gone?
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Water Helps Absorb Neutrons, Slowing Fission

Fission happens here - Neutrons born here
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Xenon Poisoning and Its Half Life

Half Life: ~9 Hours
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The Human Factors Which Led to Chernobyl
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Goal: Verity Historical Uranium Enrichment

* Question to Ask Ourselves:

— What is the lowest radiation dose that gives useful information?

* Implications for basic science, reactor safety, and nuclear security

Uranium enriched
with U-235
UFg supply
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Goal: Verity Historical Uranium Enrichment
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Goal: Verity Historical Uranium Enrichment
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Focus on Energy Fingerprint of Phase Transformations

* Wigner energy (defects) — J/g stored energy
— 0.1-2.0 J/g for most metals (Snead et al., JNM 2019)
* Phase transtormations — 100-1000 J/g stored energy

— If radiation can nucleate phase transformations, measure these signals!
SS 304 PTFE/PCTFE

e

Al 7075-
T6

H h . . L
Example centrifuge train schematic

Prof. Michael P. Short MIT Mesoscale Nuclear Materials Laboratory



Examine the PTFE (Teflon'™) Gaskets First
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Measuring Radiation Damage using Calorimetry

TA Instruments Discovery DSC
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How It Works: Measure Differential Heat Flow
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Correct for the “DSC Hook™ — Feedback Settling
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Establish Baseline Heat Capacity Outside Data Window
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Measure Heat Gain/Loss During Transtormation
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Re-Establish Baseline for Background Subtraction

Melting of PTFE
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Choose a Baseline for Subtraction

Melting of PTFE
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Extract Parameters of Interest, Repeat!

Melting of PTFE
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DSC of Irradiated PTFE Shows Very Distinct Changes
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Confirming Enrichment Levels in Each Sample

Damage
235
® 25UF,
238
® 28UF,
Depth
What was the Monoenergetic, unidivectional Monoenergetic, omnedivectional
enrichment? alphas from our accelerator alphas from a UF, gas
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How Do We Eftectively Sample in the Field?

* Extract gaskets, etc. from
an enrichment plant

* Microtome (cut) into
equal, micron-sized
thicknesses

e Use DSC on each ... but

mass 1s 1000x too small!
* Need 1mg for DSC, we

® 235UF,
® 238UF,

How much

get Ipg this way
What was the Bienergetic, omnidivectional
enrichment? alphas from a UF, gas e Switch instruments...
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Field Sampling: NanoDSC (Calorimeter on a Chip)
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Improving with FIB Liftout Techniques
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Confirmation of In Mass Calibrates the Technique
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We Use Nanocalorimetry to Reliably Measure Radiation Damage in PTFE

(e) Geometry before
Sectioning in Microtome

(f) Single Section
on Chip
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Microtomed Flash NanoDSC Confirms Alpha Radiation
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