

Chernobyl: How It Happened

The Physics and the Human Factors

Light Water vs. RBMK Reactor

Source: GAO, based on Department of Energy documentation. | GAO-15-652

Prof. Michael P. Short

Cross Sections (Barns) Give Nuclear Reaction Rates

Prof. Michael P. Short

Water and Graphite Slow Down Neutrons...

Prof. Michael P. Short

... and Water Helps Absorb Neutrons, Slowing Fission

What Happens When The Water Is Gone?

Source: GAO, based on Department of Energy documentation. | GAO-15-652

Prof. Michael P. Short

Water Helps Absorb Neutrons, Slowing Fission

Xenon Poisoning and Its Half Life

Prof. Michael P. Short

The Human Factors Which Led to Chernobyl

Prof. Michael P. Short

of *Tiny* Amounts of Radiation Damage

Rachel Connick¹, Charles Hirst¹, Kangpyo So¹, Penghui Cao², R. Scott Kemp¹, Michael P. Short¹

> ¹ Department of Nuclear Science and Engineering, MIT, USA

² Department of Mechanical Engineering, University of California at Irvine, USA

Goal: Verify Historical Uranium Enrichment

- Question to Ask Ourselves:
 - What is the lowest radiation dose that gives useful information?
 - Implications for basic science, reactor safety, and nuclear security

Goal: Verify Historical Uranium Enrichment

Grossly simplified centrifuge diagram

 $\bigcup_{U \to \alpha} \rightarrow 0 + \bigcup_{u \to \alpha} + \text{daughter}$

How much was made?

Alpha radiation will leave a signature in the material that contains UF₆

What was the enrichment?

Prof. Michael P. Short

Goal: Verify Historical Uranium Enrichment

Low expected fluences:

5 x 10⁹ α/cm^2 = 1 year of LEU 1 x 10¹¹ α/cm^2 = 1 year of 90% enriched

How low can you go?

How much was made?

Focus on Energy Fingerprint of Phase Transformations

- Wigner energy (defects) J/g stored energy
 - 0.1-2.0 J/g for most metals (Snead et al., JNM 2019)
- Phase transformations 100-1000 J/g stored energy
 - If radiation can nucleate phase transformations, measure *these* signals!

Examine the PTFE (TeflonTM) Gaskets First

Prof. Michael P. Short

Measuring Radiation Damage using Calorimetry

Simplified DSC Schematic

How much was made?

Differential Scanning Calorimetry

TA Instruments Discovery DSC

http://www.tainstruments.com/dt_gallery/discovery-dsc/

How It Works: Measure Differential Heat Flow

Correct for the "DSC Hook" – Feedback Settling

Establish Baseline Heat Capacity Outside Data Window

Measure Heat Gain/Loss During Transformation

Re-Establish Baseline for Background Subtraction

Choose a Baseline for Subtraction

Extract Parameters of Interest, Repeat!

DSC of Irradiated PTFE Shows Very Distinct Changes

Α

How much was made?

Prof. Michael P. Short

Confirming Enrichment Levels in Each Sample

Prof. Michael P. Short

How Do We Effectively Sample in the Field?

- Extract gaskets, etc. from an enrichment plant
- Microtome (cut) into equal, micron-sized thicknesses
- Use DSC on each ... but mass is 1000x too small!
 - Need 1mg for DSC, we get 1µg this way
- Switch instruments...

Field Sampling: NanoDSC (Calorimeter on a Chip)

Prof. Michael P. Short

Improving with FIB Liftout Techniques

Confirmation of In Mass Calibrates the Technique

0.6

0.5

What was the enrichment?

How much was made?

We Use Nanocalorimetry to Reliably Measure Radiation Damage in PTFE

Prof. Michael P. Short

Microtomed Flash NanoDSC Confirms Alpha Radiation

- NanoDSC confirms DSC data with 1µm slice precision
- Range verification eliminates ability to "spoof" results to fool inspectors
- DSC and nanoDSC absolute measurements agree well
- This is a new, field-ready technique for IAEA inspectors to confirm enrichment activities!

of *Tiny* Amounts of Radiation Damage

Rachel Connick¹, Charles Hirst¹, Kangpyo So¹, Penghui Cao², R. Scott Kemp¹, <u>Michael P. Short¹</u>

¹ Department of Nuclear Science and Engineering, MIT, USA

² Department of Mechanical Engineering, University of California at Irvine, USA

Slide 32