Renewable Energy Transitions: Risk and Opportunities

ILP-MIT Joint Program Webinar: Climate-Related Physical and Transition Risks

17 November 2020

Jill Engel-Cox, Director, Joint Institute for Strategic Energy Analysis
JISEA
Joint Institute for Strategic Energy Analysis

Connecting technologies, economic sectors, and continents to catalyze the transition to the 21st century energy economy.

Founding Partners:

- NREL
- Colorado School of Mines
- Colorado State University
- Massachusetts Institute of Technology
- Stanford University
- University of Colorado Boulder

www.jisea.org
To reduce emissions, the energy supply is transitioning fast

In 2019, renewable energy generated 18% of the total U.S. electricity (~7% wind, 7% hydropower, 2% solar, 1.5% biomass, 0.5% geothermal)

Natural gas power is ~38% (“bridge fuel?”)

COVID Update: January-August 2020, renewable electricity = 21% (wind 8%, solar 3.4%) with natural gas = 40% and coal = 18%
Scenarios of future electricity indicate on-going transition... and will affect regions differently

Example: Mid Case Scenario

Electrification growth may greatly increase demand and grid stress... with new industries in electric transportation, building efficiency, etc.

All Figures from NREL's Electrification Futures Study: www.nrel.gov/efs
U.S. jobs increasing in natural gas, renewables, efficiency... with national benefit but localized impact

NATURAL GAS
- Industry employs: 636,042
 - Up 1.7 percent.

PETROLEUM
- Industry employs: 824,290
 - Up 3.1 percent.

NUCLEAR
- Industry employs: 70,323
 - Down 2.5 percent.

ELECTRIC POWER
- Generation and fuels directly employed over 2 million
 - Up 42,584 (a 2.1 percent).

TRADITIONAL FOSSIL FUEL SECTORS
- In 2019, 62 percent, or 1.2 million,
 - 1.2 million of these employees worked in traditional coal, oil, and natural gas.

COAL
- The coal industry employs: 185,689
 - Down 5.9 percent.

ENERGY EFFICIENCY
- Energy Efficiency employed 2.38 million

ZERO EMISSIONS
- 509,697 worked in zero emissions' generation technologies, including solar, wind, hydro, geothermal, and nuclear.

LOW EMISSIONS
- 227,096 worked in low-carbon emissions technologies, including biofuels, CHP, and advanced/low emissions gas.

Supply chain of energy-related materials is changing... but still global and extractive

Sustainable Mining Industry

- **Raw Materials**
 - Mining and Separation, Concentration and Primary Refining
 - Cobalt ores and concentrates
 - Cobalt Intermediates

- **Processed Materials**
 - Metal Refinery: Cobalt Product for Li-ion batteries (cobalt sulfate and cobalt oxide cathode powders)
 - Chemical Refinery

Global Trade and Supply Risks

- **PV**
- **Wind turbines**
- **Batteries**
- **Refrigerants**
- **Etc.**

Circular Economy Tech, Costs, Policy

- Design for Disassembly or Recycling
- Raw Material Extraction
- End of life
- Infrastructure to extract value through reuse, remanufacturing, or recycling

Source: JISEA/CEMAC, https://www.jisea.org/
Ideas about the risks & opportunities of energy transition

• **Complexity and Resilience:** Distributed multi-input, multioutput energy systems are more complex, but may be more resilient than centralized large grid model
 – Solution may be mix of variable/non-variable low-emission energy sources plus diverse temporal storage and automated demand management
 – Cost for the transition but potentially lower marginal costs and lower externalities

• **Electrification:** Increased electrification resulting in lower emissions but higher demand for power
 – May be more difficult to meet emissions targets due to slower transition of overall energy mix
 – Increased innovation and jobs in energy efficiency, electrified equipment, transportation

• **Jobs & Local Economies:** Domestic energy jobs may grow/transition to cleaner higher-tech positions
 – May have localized impacts, especially on rural economies

• **Trade & Geopolitics:** Global supply chain dynamics shift from petroleum to metals & minerals for manufacturing

• **Environment:** Unknown effects on environment from very high deployment of renewables
 – Lower emissions and water use, but unknown changes in land use, localized temperatures, chemical use and release, landfill use and composition, viewsheds, wildlife impacts, etc.
 – All energy transitions had positive and negative effects, key is to anticipate them and mitigate the negative
Thank you! Questions?

NREL/PR-6A50-78325