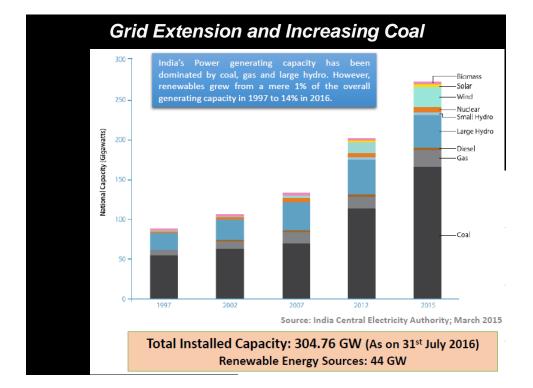
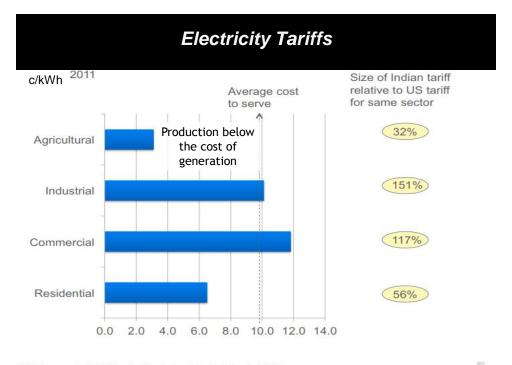

uLink

Prof. Rajeev Ram Dr. Reja Amatya Wardah Inam, Prof. David Perreault Varun Mehra, Dr. Claudio Vergara Dan Strawser Prof. David Hsu Principal Investigator Project Manager Power Electronics Data Analysis Embedded Control Field Experiments

Historically, electrical power has been the largest source of CO₂ emissions, the main contributor to climate change. But in the upcoming decades electricity can become a key lever in evolving towards a low carbon economy.

User Interaction with the Electricity Grid

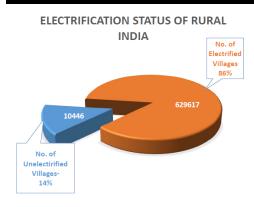

	I	Glob	al El	ectricit	y A	cces	S	
Electrification segm (million people per ca		eloping wor	ld		Issu	ies	In	npact
290	100	170	10 5 5	Off-grid		1.4 B people		Poor health (air pollution, lack of medical services)
300	300	220	510 855 20	Grid nearby, but not connected	1	have no access to electricity		

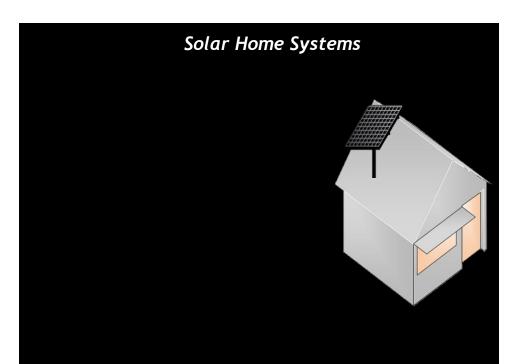


> 5,000	China						
1,000-5,000							India
500-1,000	lran Brazil			Indonesia			
250-500	Vietnam Argentina Thailand	South Africa			Pakistan	Nigeria	
100-250	Colombia Iraq		Philippines Angola	Sudan	Ethiopia Bangladesh		
10-100	Peru Sri Lanka Laos Botswana Ecuador	Guinea Zimbabwe Ghana Nepal Senegal	Madagascar Cote D'Ivoire Yemen Zambia Cambodia	Tanzania Myanmar Kenya Uganda	DR Congo		
1-10	Congo Nicaragua Guinea-Bissau Gambia Swaziland	Rwanda Haiti Sierra Leone Togo	Malawi Chad Mali Burundi				
	1-5 Million	5-10 Million	10-25 Million	25-50 Million	50-75 Million	75-200 Million	>200 Million

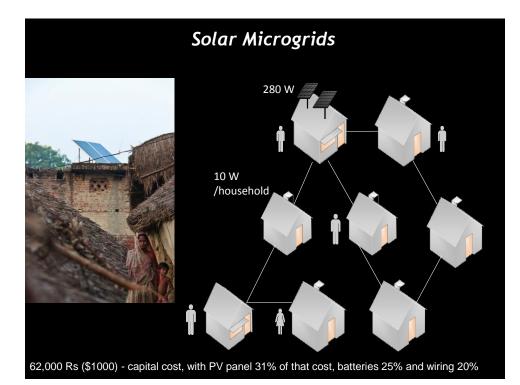
Population without access to electricity

Source: World Bank Development Indicators, 2015; Intergovernmental Panel on Climate Change, 5th Assessment Report,2014





JRCE: Government of India Planning Commission, Columbia University, US EIA


4

The Consequences of Selling Below Cost

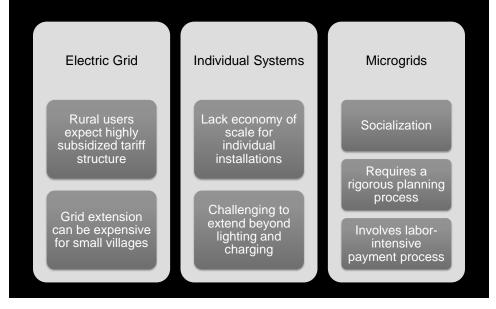
\$20/Watt Installed

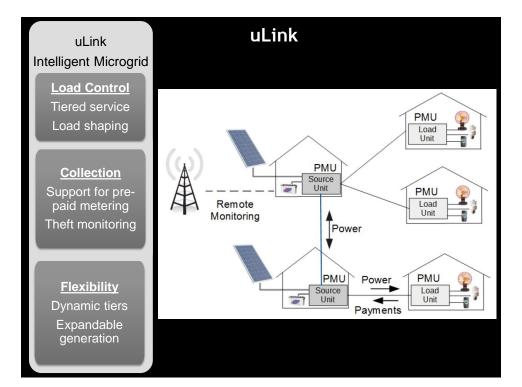
Challenges of Rural Electrification

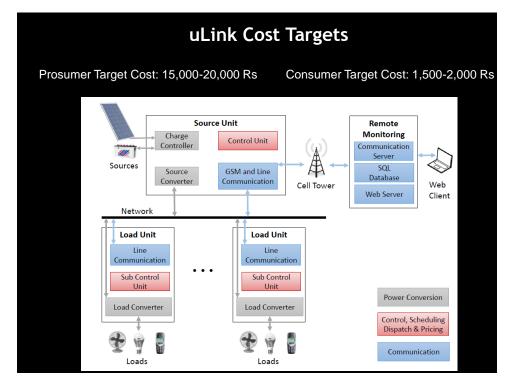
Electrification technologies	Factors r			
	Low initial capital for user	Ease of deployment	Empower users to add generation	Low cost of capacity expansion
Electric grid	\checkmark	×	×	×
Individual systems (e.g. solar, etc.)	×	\checkmark	\checkmark	×
Traditional microgrids	\checkmark	×	×	×

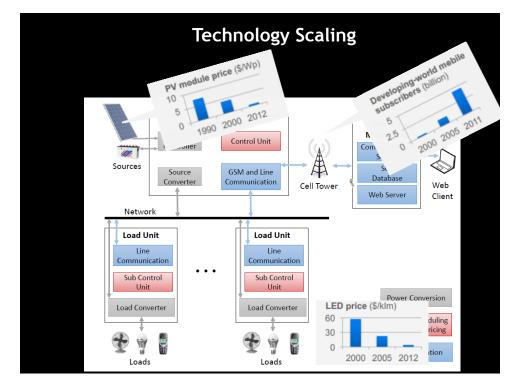
Learning by Doing (July 2015)

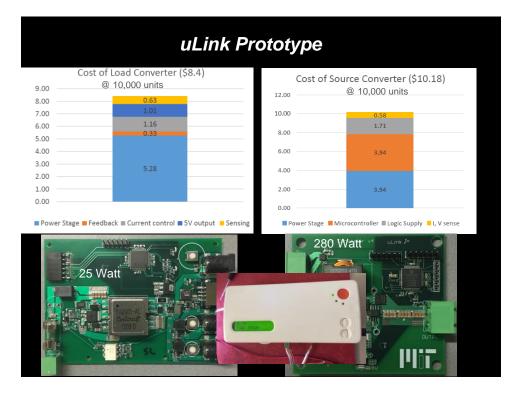
- Work with local CSR (Tata Steel) to survey village needs
- Survey local appliances and PV systems
- Install Solar Home System in 5 households

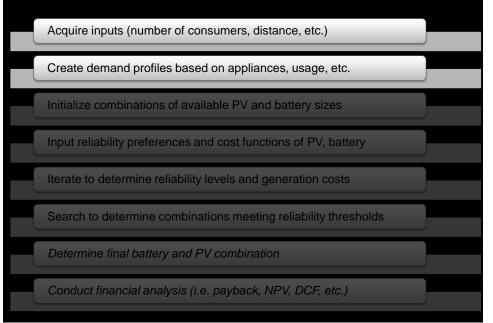

Learning by Doing (August 2016)

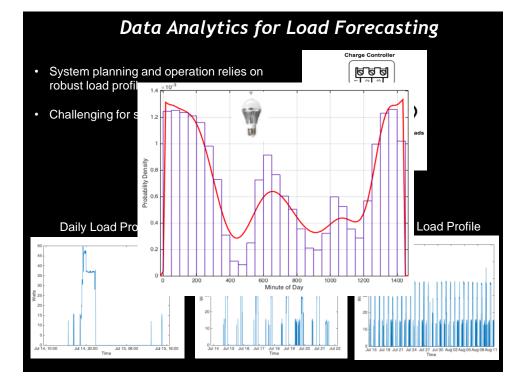

- Work with a local entrepreneur to establish a microgrid business in a village
- Recruit (20) customers for the microgrid and establish tariffs
- · Install PV system, wiring, and appliances
- Establish maintenance agreement for microgrid

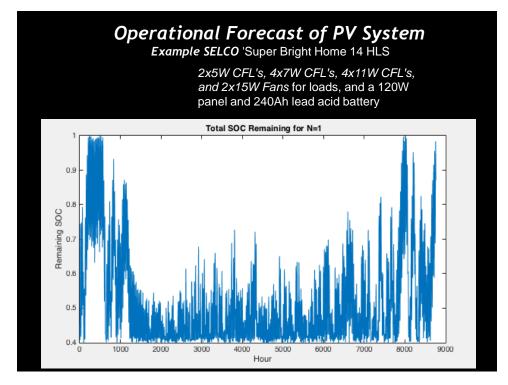


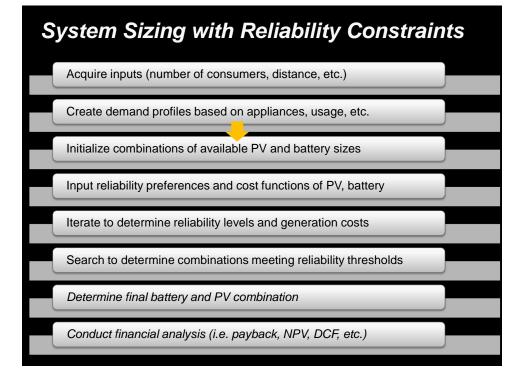



Challenges of Rural Electrification

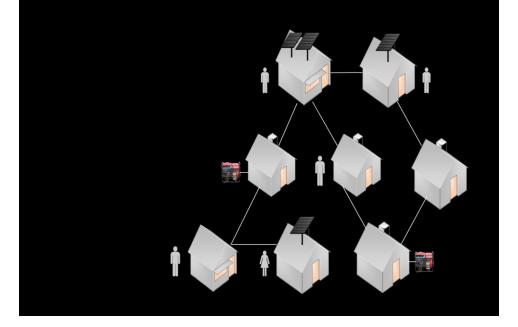


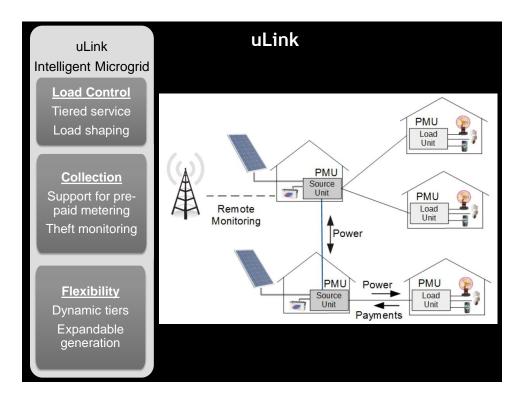






System Sizing with Reliability Constraints




System Modeling with Demand Response

- Demand inputs
 - 2 LED's, 1 Fan, 1 Cell phone charger for 5 households
- PV module selection: 130 watts
- Battery size: 80 ah
- LCOE over 5 years: 0.279 (\$/kWh)
- Capital cost: \$3.94
- Initial cost (including network): \$511
 - \$15/customer electronics
 - \$40/prosumer electronics
- Breakeven monthly revenue required (with no initial connection fee): \$4.76
- Breakeven monthly revenue required (with connection fee of \$15): \$3.96

Ad Hoc Expansion of the Microgrid

	Р	ower Sharing	
Predetermined Parameters			\sim
Network Configuration	Distributed Star		
Number of Sources	2		
Number of Loads	7		Load Unit
Nominal Voltage (V_{ref})	$24\mathrm{V}$		
Total Load Power (p_{Σ})	$140 \mathrm{W}$		PMU
Max Line Time Constant (τ_{max})	$0.27\mathrm{ms}$	\mathbf{A} \square	Source
Constraints		A 1	Init PMU (PMU
Min Node Voltage (V_{\min})	$18\mathrm{V}$	Remote	Load
Min Distribution Efficiency (η_{\min})	90%	Monitoring	Unit 🔤 🖡
Free Parameters		5	TPower
R Between Source and p_{Σ} (R_{Σ})	$0.22 \Omega(\leq 0.26 \Omega)$		*
Droop Resistance (r_d)	$0.50\Omega(\le 0.51\Omega)$		\wedge
Load Input Capacitance (C)	$80\mu\mathrm{F}(\geq 16.7\mu\mathrm{F})$		
Control Parameters			PMU Power PMU 😱 🗋
Time between messages (T_m)	1.5 s	L	Source Load Load Unit
Voltage gain $(k_{i,v})$	$0.30 \mathrm{V^{-1} s^{-1}}$	L	Payments
Power gain $(k_{i,p})$	$0.017 \mathrm{W^{-1} s^{-1}}$		r dymonto
Experiment: Line Impedances		Power Sharing: $\lambda_1/\lambda_2 = 1.5$	Voltage Regulation: $\lambda_1/\lambda_2 = 1.5$
$Z_1 = R_1 + j\omega L_1$	$0.83 \Omega + j\omega (18 \mu H)$		23
$Z_2 = R_2 + j\omega L_2$	$0.10 \Omega + j\omega(27 \mu \text{H})$		24.5 -
	80 -		
	Ex		223.5 1907 22
	60 -		\$ 23.5 ·
	§		voltr
	40 -		23
	40	P_1	22.5
		P_2	
	20	5 10 15	22 0 5 10 15
		Time [s]	Time [s]

