What Will Make or Break Nuclear Energy in a Low-Carbon World

Center for Advanced Nuclear Energy Systems (CANES)

A MITEI Low-Carbon Energy Center

Jacopo Buongiorno

TEPCO Prof. and Assoc. Dept. Head, Nuc. Sci. Eng. Director, Center for Advanced Nuclear Energy Systems jacopo@mit.edu, 617.253.7316

MITei

Шiř

NSE

Nuclear Science and Engineering

science : systems : society

About the speaker

Jacopo Buongiorno

Massachusetts Institute of Technology (MIT)

Bulleunon			
Polytechnic of Milan	Nuclear Engineering	B.S.	1996
Massachusetts Institute of Technology	Nuclear Engineering	Ph.D.	2000

Professional Experience

Education

2015-	Associate Department Head, Nuclear Science and Engineering, MIT
2015-	Director, Center for Advanced Nuclear Energy Systems (CANES)
2015-	Professor of Nuclear Science and Engineering, MIT
2011-	Accreditation Board - National Academy of Nuclear Training (NANT
2011-2012	Special Committee on Fukushima, American Nuclear Society
2008-2015	Associate Professor of Nuclear Science and Engineering, MIT
2004-2008	Assistant Professor of Nuclear Science and Engineering, MIT
2000-2004	Research Scientist, Idaho National Laboratory
	•

Awards and Honors

- Ruth and Joel Spira Award for Distinguished Teaching, School of Engineering, 2015, 2011 and 2006.
- MacVicar Award for Excellence in Undergraduate Teaching, MIT, 2014.
- Best Paper Award at the 9th Int. Topical Meeting on Nucl. Thermal-Hydraulics, Operation and Safety (NUTHOS-9), Kaohsiung, Taiwan, September 9-13, 2012.
- 2 most cited articles in Int J Heat Mass Transfer 2007-2012.
- Landis Young Member Engineering Achievement Award, American Nuclear Society, 2011.
- ASME Heat Transfer Division Best Paper, 2008.
- Best Paper Award at the 1st Micro/Nanoscale Heat Transfer Int. Conf., Tainan, Taiwan, January 6-9, 2008
- Junior Bose Award for Excellence in Teaching, MIT School of Engineering, November 2007
- Carl R. Soderberg Professor of Power Engineering Chair, MIT, July 2007-to present
- Graduate Teaching Award, MIT School of Engineering, 2005
- Norman C. Rasmussen Career Development Chair in Nuclear Engineering, MIT, 2004-2006
- Mark Mills Award for Best Nuclear Engineering Doctoral Thesis in the U.S., American Nuclear Society, 2001

Publications

>70 journal articles

WHY WE NEED NUCLEAR

Vast majority of the World's energy supply comes from CO₂ emitting fossil fuels

World¹ total primary energy supply (TPES) from 1971 to 2013 by fuel (Mtoe)

K. Caldeira, K. Emanuel, J. Hansen, T. Wigley (COP 21, Paris 12/3/15)

"There is no credible path to climate stabilization that does not include a substantial role for nuclear power"

"A major expansion of nuclear power is essential to avoid dangerous anthropogenic interference with the climate system this century." "We've done the math and we can't power the world without nuclear energy."

Growth opportunities for nuclear come from the desire to decarbonize the economy

- Dominate baseload electricity generation: 200 GWe to replace coal in the US
- 2. Electrify the transportation sector: 150-200 GWe to replace all US cars and light trucks with PIHVs*
- 3. Produce liquid fuels from biomass: 260 GWt to satisfy total US transport fuel demand*
- 4. Generate heat and hydrogen for oil refineries: 300 GWt to satisfy total US demand
- 5. Water desal is a small market: 16 GWe worldwide**

* #2 and #3 are not additive

** Assumes 100 Mm³/day, produced with RO (3.5 kWh/m³) and 90% capacity factor

WHY WE LIKE NUCLEAR

Nuclear plants require much less fuel than fossil plants and emit no CO₂

Fuel energy content

COAL (C): C + $O_2 \rightarrow CO_2$ + 4 eV NATURAL GAS (CH₄): CH₄ + $O_2 \rightarrow CO_2$ + 2H₂O + 8 eV NUCLEAR (U): ²³⁵U + n \rightarrow ⁹³Rb + ¹⁴¹Cs + 2n + 200 MeV

Fuel Consumption, 1000 MWe Power Plant (~740,000 homes)

- COAL (40% efficiency):
- 10⁹/(0.4x4x1.6x10⁻¹⁹)≈3.9x10²⁷ C/sec (=6750 ton/day)
- NATURAL GAS (50% efficiency):
- 10⁹/(0.5x8x1.6x10⁻¹⁹)≈1.6x10²⁷ CH₄/sec (=64 m³/sec)
- **NUCLEAR** (33% efficiency):
- 10⁹/(0.33x200x1.6x10⁻¹³)≈1.0x10²⁰ ²³⁵U/sec (=3 kg/day*)

 $1 \text{ eV} = 1.6 \text{x} 10^{-19} \text{ J}$

* corresponding to about 300 kg/day of natural U

Nuclear plants require much less space and are more steady and reliable than renewables

NUCLEAR: Paluel, France, 5200 MW (24/7, year around, >90% capacity factor), 0.8 sq. miles

 $\sim 5850 \text{ MW}_{e}/\text{mi}^{2}$

WIND: Alta Wind Farm, CA, 1020 MW max (only if the wind blows, <40% ~ capacity factor), 5 sq. miles

~ 82 MW_e/mi²

SOLAR: Ivanpah, CA, 390 MW max. (only if the sun shines, nothing at night, <30% capacity factor), 6 sq. miles

 $\sim 20 \text{ MW}_{e}/\text{mi}^{2}$

Nuclear is also geographically much less constrained than renewables

Uranium is plentiful... in fact essentially infinite

100 years of uranium usage at current rate (0.067 million tonnes/year)

Resource type and size [Million tonnes U]

* Recoverable with braided adsorbents moored to the ocean floor. Capacity is \sim 1 ton of U per km² of ocean floor per year

(slide courtesy of Prof. Erich Schneider, U-Texas at Austin)

Uranium prices are set by stable, friendly countries

Nuclear capacity can be scaled up much quicker than renewables

Low-carbon electricity supply: Nuclear has scaled much faster

(average annual increase in zero-carbon kilowatt hours per capita during peak decade for nuclear (blue) and renewable (green) electricity generation)

There are >440 nuclear power plants worldwide

mostly built in a period of only 25 years

67 new reactors are in various stages of construction

Olkiluoto – Finland

Lungmen – Taiwan

Kudankulam – India

Flamanville – France

Rostov – Russia

Shimane – Japan

Taishan – China

Shin kori – S. Korea

Nuclear constitutes a large near-term business opportunity

Sources: International Atomic Energy Agency; World Nuclear Association; U.S. Department of Commerce

\$740 Billion Global Nuclear Energy Market Over Next 10 Years

Nuclear is already the largest emission-free electricity source in the US and the EU by far

~595,000,000 ton of CO_2 emissions (equivalent to 135 million cars) avoided in the US in 2014

Nuclear has a very low environmental impact

Nuclear power, by replacing fossil fuels, has prevented an estimated 1.84 million air-pollution related deaths worldwide

NUCLEAR HAS ITS CHALLENGES

- Capital cost and construction schedule of new nuclear plants are too high
- Significant changes in local market conditions can cause premature shutdown
- Design certification and licensing of new plants is too lengthy and expensive (especially in the US)

- Severe accidents can result in land contamination and longterm evacuation of local population
- Disposal of spent fuel in traditional geological repositories has proven politically challenging
- Diversion of fissile material can lead to development of nuclear weapons

Challenge 1: Reduce Capital Cost

LCOE for new nuclear is high because of the high cost of the plant

Technology	Capacity Factor (%)	Range of Levelized Costs (2013 \$/MWh)				
		Minimum	Average	Maximum		
Dispatchable						
Gas Combined Cycle	87	68.6	72.6	81.7		
New Nuclear	90	91.8	95.2*	101		
Advanced Coal (IGCC with CCS)	85	132.9	144.4	160.4		
Intermittent						
Onshore Wind	35	65.6	73.6	81.6		
Utility-Scale Solar PV	25	97.8	125.3	193.3		

Sources: New generating capacity costs from Energy Information Administration, Annual Energy Outlook 2015; existing nuclear costs are 2013 total generation costs (fuel, O&M, capital) from Electric Utility Cost Group for US.

*Compare to average production cost of nuclear electricity from current U.S. fleet: 24 \$/MWh

Most of the cost is in installation and financing, not equipment

Construction Cost Estimates for Generic US AP1000 Project

Source: Black & Veatch for the National Renewable Energy Laboratory, Cost and Performance Data for Power Generation Technologies, Feb. 2012, p. 11

Standardization, tight project management and efficient construction can make a huge difference

Note: Project costs are "all-in" (overnight + financing); Sources: See backup slides. (Data collected and organized by Eric Ingersoll)

Opportunities for innovation in NPP cost reduction

Shipyard / factory construction + new methods for transportation to site

Advanced robotics to reduce # of operators and guards

Prefab reinforced concrete

High thermal efficiency lowers direct and indirect costs

Additive manufacturing for nuclear components with complex geometry

Challenge 2: Achieve Profitability in Renewable Intensive Markets

Low electricity prices erase the profits of baseload generators like nuclear power plants

Opportunities for innovation in NPP operation modes

Load following

Hydrogen generation

Couple to inexpensive energy storage

Water desalination

Syn fuels

Challenge 3: Enhance Safety

LWRs with traditional safety systems may incur fuel damage and significant radionuclide (Cs, I) releases during unmitigated severe accident conditions

New safety goals after Fukushima:

- Demonstrate passive safety with 'infinite' coping time
- Eliminate need for evacuation of locals after severe accidents

Opportunities for innovation in NPP safety

Accident tolerant fuels

Non-volatile, inert coolants

Risk-informed regulations

Offshore siting

WHAT IIII CAN DO

(MIT President Emeritus)

Ernie Moniz (US Energy Secretary)

- Launched in 2006 by Susan Hockfield and Ernie Moniz
- Development and deployment of low-carbon energy technologies and increasing the efficiency of conventional energy technologies
- Sponsored by industry, government and the NGO sectors
- >\$600 million in member contributions
- 1/3 of MIT's faculty works with MITEI on energy and climate topics

Rafael Reif (MIT President)

"The world needs an aggressive but pragmatic transition plan to achieve a **zero-carbon global energy system**. [...] I urge everyone to join us in rising to this historic challenge."

Bob Armstrong (MITEI Director)

Founder: Mujid Kazimi

Director: Jacopo Buongiorno

Co-Director: John Parsons

Center for Advanced Nuclear Energy Systems (CANES)

One of eight MITEI Low-Carbon Energy Centers (LCEC)

12 full time NSE faculty, 4 research staff + 20 faculty and staff from other MIT units (e.g. NRL, MechE, DMSE)

CANES Research Volume ~\$10M/year

MISSION

We develop transformative methods, materials and technologies to make fission energy systems more:

- Affordable
- Easy to deploy
- Safe
- Sustainable

CANES' Agenda for Nuclear Innovation

Dorformonoo	Deployment				Applications and	
Periormance	Near Term	Mid Term		1	Applications and	
Requirements	(<15 years)	(15-35 years)		rs)	Stakenoiders	
 Superior Economics Reduce overnight capital cost by ≥30% Maintain profitability in renewable-intensive markets Superior Safety Demonstrate passive safety with 'infinite' coping time Eliminate need for evacuation of locals after severe accidents Adopt risk-informed regulations 	Baseload ALWRs (with cheap storage and/or syn fuel production)	Liquid-salt reactors	Offshore floating reactors	Liquid-metal fast reactors	High-temp gas reactors	 Baseload electricity generation (power generators) Electrification of transportation sector (automotive industry, power generators) Synthetic fuel and H₂ production (energy companies) Energy-hungry businesses (manufacturing, smelters, data centers)
 Superior Sustainability Dispose of spent fuel safely, securely and permanently Maintain strict control of fissile material throughout the fuel cycle 	Deep boreholes disposal of spent fuel Regional enrich. centers; domestic fuel banks Regional fuel take-back centers				 High-level waste management (drilling, mining companies) Prevent proliferation of nuclear weapons (IAEA, governments) 	
21 st Century Technologies Applied to Nuclear Plants	Nanotechnology 3D printing Modular construction Hi-Fi modeling & simulation Robotics and prognostics			 Fuel and reactor component fabrication (nuclear vendors, shipbuilding companies) Reactor operations, maintenance and emergency response (nuclear utilities) 		

REACTOR CONCEPTS TO REDUCE THE CAPITAL COST AND ENHANCE THE SAFETY OF NPPS

Offshore floating nuclear power plant (OFNP)

- Entirely built and decommissioned in a shipyard: faster and cost-effective plant construction (<36 months)
- Reduced capital cost (>90% cut in reinforced concrete)
- Transported to the site, moored 5-12 miles offshore, in relatively deep water (~100 m): insensitive to earthquakes and tsunamis
- Submarine AC cable connects to grid
- Reactor could be large LWR (1100 MWe), SMR (300 MWe) or other design
- Nuclear island underwater: ocean heat sink ensures indefinite passive decay heat removal (no Fukushima scenario)

Profs. J. Buongiorno, M. Golay, N. Todreas

Fluoride-Salt-Cooled High-Temperature Reactor (FHR)

Builds upon existing technology

Fuel: TRISO particle fuel, no failure up to ~1650°C, strongly negative Doppler feedback

Coolant: FLiBe liquid salt, low-pressure, chemically inert, large margin to boiling (1430°C), high heat capacity, enables power density up to 10x gas-cooled reactors

Power Cycle: Modified natural-gas air Brayton power cycle with General Electric 7FB turbo-compressor

Drs. C. Forsberg, L. Hu

FHR with Nuclear Air-Brayton Combined Cycle (NACC)

Stored Heat and/or Natural Gas

Variable Electricity

- Peak electricity with natural gas or hydrogen
- Highest efficiency conversion of NG to electricity
- Very fast response because peak power off base load
- 50 to 100% greater revenues than base-load plant

ENERGY STORAGE AND ENERGY SINKS THAT COUPLE WELL WITH NUCLEAR PLANTS AND RENEWABLES

Firebrick Resistance-heated Energy Storage (FIRES) for daily fluctuations

- Firebrick electrically heated when electricity prices are low
- Hot firebrick provides hot air to partly substitute for natural gas in industrial furnaces
- Couples well with NACC
- Expected capital cost less than \$5/kWh
- Changes electricity price curves
- Stops price collapse when high renewable generation is online
- Aids nuclear and renewables

Tokyo Electric example

Dr. C. Forsberg

Synthetic Fuels and H₂ from High-Temperature Electrolyzers

- Can absorb electricity from renewables and/or nuclear plants at times of high generation and low demand
- Avoids daily electricity price collapse
- SOEC technology is at developmental stage (support by DOE/NASA)

Profs. B. Yildiz, A. Ghoniem

Navy's process to make jet fuel from seawater

- Electrolytic Cation Exchange Module (E-CEM) simultaneously extracts CO₂ (92% efficiency) and produces H₂ from seawater (no chemicals needed)
- Two-step catalytic process turns CO₂ and H₂ into jet fuel

- Fuel's energy content is equal to 60-80% of electricity input
- 23,000 gal of seawater per gal of fuel
- Current cost estimate is \$6/gal
- Demonstrated at lab scale
- CO₂ is 140 times more concentrated in seawater, than air (100 mg/L vs 0.77 mg/L)
- Carbon-neutral jet fuel, if nuclear electricity is used + would contribute to de-acidification of oceans

ADVANCED CROSS-CUTTING CAPABILITIES AND TECHNOLOGIES

Robots for Nuclear Plants

Brokk 100

Pipe Inspection robot (Savannah River)

Bolt inspection robot (Westinghouse Electric Company)

Robots currently used in NPPs:

- Specialized machines for specific tasks
- Inspection purposes
- Limited mobility
- Quasi-static position control

Inspection robot (TOSHIBA)

Prof. S. Kim

Robots - The MIT Edge

Physical interaction is key to expanding the applications of robots in NPPs:

- Advanced legged systems can access 'hard to reach' spaces
- Beyond position controlled machine, dynamic manipulation through novel teleoperation interface with force feedback
- Routine inspection via autonomous navigation
- Replacement of security guards
- In the long-term (e.g. decommissioning) robots can be as efficient as human

Robots - The MIT Edge (2)

3D Printing of NPP Components

Fabricate nuclear components with complex geometries without welding. Nuclear QA available from weapons program

CFD-designed, **3D-printed components**

Use of CFD to drive the design of fuel assemblies, core internals, entire components for performance optimization, not fabrication

3D printing of composite materials Tailored properties for corrosion resistance and/or radiation damage resistance, e.g., get a sound bond between a HCP and BCC Zry material with large composition differences by grading the chemistry

Profs. N. Fang, E. Baglietto, R. Ballinger, A. Slocum, D. Whyte

Nuclear = Clean Energy

Center for Advanced Nuclear Energy Systems (CANES)

A MITEI Low-Carbon Energy Center

Miī

MITei

Illii

NSE Nuclear Science and Engineering

science : systems : society