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Problem	1.	Blind	Inference
(application:	Monetizing	ML)

Convolutional	NN
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MRI	Image

$0.1

Secure	Two-party	Computation:	“Alice	should	get	(only)	
the	inference	result,	and	the	startup	should	learn	nothing”



Problem	2.	Blind	Training
(application:	Collaborative	ML)

HospitalID Genome ID Phenotype
6)(fz

Database	could	be	horizontally	or	vertically partitioned

Secure	Two-party	Computation:	“Parties	should	learn	a	
classifier	(genotype-phenotype	correlations)	but	nothing	else”



What	does	“blind”	mean?

Defining	Security:	the	Simulation	Paradigm	[GMR’85]

Adversarial	capability	=	honest-but-curious vs	malicious

“Anything	learnt	on	the	left	could’ve	been	learnt	on	the	right”

VS.
REAL	WORLD IDEAL	(Imaginary)	WORLD

O



Conventional	Wisdom	(?)

EITHER: Large	Communication	Overhead

Large	Computational	Overhead

or

Only	support	simple	models*

or

[Lindell-Pinkas’00,	Lauter-Naehrig-V.’11,	Wu-Haven’12,	
Graepel-Lauter-Naehrig’12,	Nikolaenko-Weinsberg-
Ioannidis-Joye-Boneh-Taft’13a,13b,	Bost-Popa-Tu-
Goldwasser’15	and	many	more]	



Secure	Computing	Techniques	I
From the 1980s

[1986]
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o Yao’s	Garbled	Circuits

o Goldreich-Micali-Wigderson (GMW)	Protocol [1987]

o BenOr-Goldwasser-Wigderson (BGW)	Protocol [1988]

2	parties,	lightweight	crypto

2	or	more	parties,	lightweight	crypto

3 or	more	parties,	<	½	corruption,	no	crypto



Secure	Computing	Techniques	I
From the 1980s
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MINUS.	 Inefficient	Communication	(∝ Boolean	circuit	size)	

MINUS.	Computational	efficiency	only	for	Boolean	
(vs.	arithmetic)	computations*

PLUS.	Efficient	computationally.



Secure	Computing	Techniques	II
From this decade 

%*92=	EncKey[image]

6)(z=	EncKey[label]

image

label Label

Fully Homomorphic Encryption [Gen’09, BV’11, BGV’12, GSW’13]



Secure	Computing	Techniques	II
From this decade 

%*92=	EncKey[image]

6)(z=	EncKey[label]

Fully Homomorphic Encryption [Gen’09, BV’11, BGV’12, GSW’13]

PLUS. Efficient Communication	(∝ image	size)	

PLUS. Native	Arithmetic	(not	just	Boolean)	Computations

MINUS. Inefficient	Computation	(∝ degree)	



The	Old	vs	The	New:	Which	is	Better?

A B
How	would	you	get	from	A	to	B?
(assume	unlimited	supply	of	Ferraris	and	Camels)	

or



When	is	FHE	Better?
(than	garbled	circuits/GMW/BGW	etc.)

WHEN:
1. Computation	is	linear	(degree-1)

and

2.		Circuit-size	is	super-linear	(say,	quadratic)

(FHE	is	fast)

(MPC	costs	in	bandwidth)



Overview	of	Our	Approach
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Convolutional	Neural	Networks:	
Alternating	Linear	and	Non-linear	Layers



Gazelle:	Fast	HE	for	CNNs
Fast	Homomorphic	Encryption	Library	with	Native	

Support	for	Neural	Network	Layers

(extending	the	PALISADE	lattice	library)



Basic HE Operations

Ciphertexts:

2048 Slots, each 64 Bits

Each Slot: Plaintext        & “Noise”

Addition:  Add an encrypted vector v to another encrypted 
vector v’

Scalar Multiplication: Mult encrypted v with plaintext v’ (co-
ordinate wise)

Rotation (Automorphism): Permute the slots (typically, rotate)

Plaintexts: 8 bits.



Gazelle: Fast HE for CNNs
Fast Homomorphic Encryption Library with 
Native Support for Neural Network Layers

Homomorphic Addition*:	
∼ 6	μs or	18K	clock	cycles	(for	2048	add)

Homomorphic Scalar	Mult*:
~	14	μs or	42K	clock	cycles	(for	2048	mult)

Homomorphic Slot	Rotation:
~	300	μs or	900K	clock	cycles	(non-amortized)	

*	single-threaded,	no	vectorization,	3GHz	processor
*	CT	dimension:	2048,	modulus:	64	bits,	pt mod:	8	bits

(extending	the	PALISADE	lattice	library)



Gazelle: Fast HE for CNNs
Fast Homomorphic Encryption Library with 
Native Support for Neural Network Layers

Our	Work:	Homomorphic Matrix-Vector	Mult
64	X	2048	matrix	of	8-bit	numbers
∼ 16	ms,	47M	clock	cycles	(ptxt:	at	least	128K)

*	single-threaded,	no	vectorization,	3GHz	processor
*	CT	dimension:	2048,	modulus:	64	bits,	pt mod:	8	bits

(extending	the	PALISADE	lattice	library)

Our	Work:	Homomorphic Convolutions



Gazelle: Fast HE for CNNs
Fast Homomorphic Encryption Library with 
Native Support for Neural Network Layers

MNIST

(extending	the	PALISADE	lattice	library)

CIFAR-10

ImageNet

2	conv,	2	FC,	32*32	input,	400K	mult-add	

7 conv,	1	FC,	32*32	input,	61M	mult-add

100	ms comp.	+	111	Mb	comm.	=	111ms*

5	conv,	3	FC,	256*256	input,	1.3G	mult-add	

1.6s comp.,	2	Gb	comm.	=	2s*

20s comp.,	20	Gb	comm.	=	20s*



Fast Matrix Multiplications

1. Simple Mult: Each matrix row with the encrypted vector
Lots of rotations  (N log N)

Evaluated ciphertexts are not packed 
(one number per ciphertext)

Reasonable noise growth 𝜼𝟎	𝑿	𝜼𝒎𝒖𝒍𝒕 + 𝜼𝒓𝒐𝒕



Fast Matrix Multiplications

2. Diagonal Multiplication:

Fewer rotations  (O(N) on the encrypted vector)

IDEA: Non-interacting numbers go into same ciphertext

Bigger noise growth (𝜼𝟎+ 𝜼𝒓𝒐𝒕)	𝑿	𝜼𝒎𝒖𝒍𝒕



Fast Matrix Multiplications

3. Interpolating between 1 & 2 (“Baby Step Giant Step”)

4. “Hoisting”: optimized [Halevi-Shoup’17]

“N input rotations (almost) for the price of one”



Ongoing & Future Work

u Programming Framework for Encrypted CNNs.
Mostly handcoded + some automatic  optimization
Can we come up with the best homomorphic evaluation 
automatically?

u Beyond CNNs?

u Encrypted ML Training?

Limits of encrypted computation



Thank you!


